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Preface

The Smoky Mountains Computational Sciences and Engineering Conference (SMC
2020) was held in Oak Ridge, Tennessee, USA, during August 26–28, 2020. This year,
we had a new virtual venue due to the COVID-19 pandemic and a new theme: the
convergence of high-performance computing (HPC) and artificial intelligence (AI) for
driving future science and engineering discoveries through the integration of experi-
ment, big data, and modeling and simulation.

Throughout the past year, the U.S. Department of Energy’s National Laboratories,
in collaboration with other institutions, completed a series of town hall meetings to
gather insights about the opportunities and challenges facing the scientific community
as HPC and AI technologies converge. This convergence will integrate large-scale
simulation, advanced data analysis, data-driven predictive modeling, theory, and high-
throughput experiments. SMC 2020 marks the 5th year our conference has covered
these topics, and our outcomes have played a significant role in framing the landscape
for HPC-AI convergence. At Oak Ridge National Laboratory (ORNL), our Summit
supercomputer (currently the second most powerful in the world) is hosting a wide
range of projects to solve some of science’s most daunting challenges, and the system’s
revolutionary architecture is ideal for making discoveries in line with our conference
theme.

We have already begun preparing for the post-Summit world with Frontier, a Cray
system expected to debut in 2021 as the world’s most powerful supercomputer with a
performance of more than 1.5 exaflops. As a second-generation AI system, Frontier
will provide new capabilities for machine learning, deep learning, and data analytics
that will inform manufacturing, human health, and many other applications. Because
of the rapid innovations in HPC and AI, SMC 2020 organizers decided this year’s
conference needed to gather new ideas with fresh perspectives to make a larger impact
in the scientific community.

To reach this goal, we issued a call for papers (CFP), enabling scientists to share
research breakthroughs at our conference, discuss ideas and experiences, and contribute
to our program via peer-reviewed papers. SMC 2020’s Program Committee consisted
of 70 leading experts who helped advertise the CFP, then reviewed papers for the main
program and our scientific data challenge competition. The accepted papers, which are
compiled in the SMC 2020 conference proceedings, describe the most important
directions for research, development, and production, as well as elucidate experiences
and advocate for investment in areas related to the conference theme. These important
areas were defined by the following sessions:

Session 1. Computational Applications: Converged HPC and Artificial Intelligence.
This session addressed applications that embrace data-driven and first-principle
methods, and participants focused on converging AI methods and approaches with
high-performance modeling and simulation applications. Topics included experiences,
algorithms, and numerical methods that will play an important role in this area. Papers



and invited talks explained how simulation can be used to train and integrate AI models
to work with simulation applications while quantifying errors.

Session 2. System Software: Data Infrastructure and Life Cycle. In this session,
participants discussed the scientific data life cycle from collection to archive, including
all the aspects in between and the infrastructure needed to support it. The session
covered techniques and system designs needed to securely publish, curate, stage, store,
reduce, and compress data. The session also covered techniques for annotating data
with metadata and automatically extracting information from massive data sets.

Session 3. Experimental/Observational Applications: Use Cases That Drive
Requirements for AI and HPC Convergence. Participants discussed ways to use mul-
tiple federated scientific instruments with data sets and large-scale compute capabili-
ties, including sensors, actuators, instruments for HPC systems, data stores, and other
network-connected devices. The session explored some of the AI and HPC workloads
that are being pushed to the edge (closer to the instruments) while large-scale simu-
lations are scheduled on HPC systems with large capacities. This session focused on
use cases that require multiple scientific instruments and emphasized examples that
combine AI and HPC with edge computing.

Session 4. Deploying Computation: On the Road to a Converged Ecosystem. Topics
included industry experiences and plans for deploying the hardware and software
infrastructure needed to support applications used for AI methodologies and simulation
to deploy next-generation HPC and data science systems. Participants discussed how
emerging technologies can be co-designed to support compute and data workflows at
scale.

The Smoky Mountain Poster Session. For this session, SMC 2020 organizers
highlighted accepted papers that provided novel contributions to the main themes of the
conference proceedings, including new benchmarks for HPC and AI, advances in data
science and AI software stacks, and visualization as a service to smart homes.

The Smoky Mountain Data Challenge. Scientific data sponsors developed chal-
lenges based on eminent ORNL data sets from scientific simulations and instruments in
physical and chemical sciences, electron microscopy, bioinformatics, neutron sources,
urban development, and other areas for the SMC Data Challenge (SMCDC 2020)
competition. Students and data analytics experts submitted papers describing their
strategies and solutions to a series of increasingly difficult challenge questions. Overall,
52 teams registered for the competition and 23 teams completed the challenges. A peer-
review process selected nine finalists and eight honorable mentions, all of whom
presented lightning talks at SMC 2020. An online audience poll selected the best
lightning talk.

SMC 2020 had an excellent lineup of speakers eager to engage with our attendees.
Conference organizers accepted 37 high-quality papers from 94 submissions for a
competitive acceptance rate of 39%. The accepted papers came from more than 40
international institutions, including universities, national laboratories, HPC centers, and
vendors. Of these papers, 18 were presented during session talks, 10 were presented in
the poster session, and 9 were presented in the data challenge competition. All papers
were peer-reviewed by at least three experts, and the majority had four reviewers. The
conference also included three invited talks to cover important topics not addressed by
the papers. SMC 2020 began with a keynote panel made up of prominent researchers
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and visionaries who shared their perspectives in a session called “The Future of HPC
Systems in the Presence of AI.”

SMC 2020 would not have been possible without our attendees, who once again
came together in our shared mission to discuss solutions to the most complex problems
in energy science and computing.

August 2020 Jeffrey Nichols
Becky Verastegui

Arthur ‘Barney’ Maccabe
Oscar Hernandez

Suzanne Parete-Koon
Theresa Ahearn
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Improving Seismic Wave Simulation
and Inversion Using Deep Learning

Lei Huang(B), Edward Clee, and Nishath Ranasinghe

Department of Computer Science, Prairie View A&M University,
Prairie View, TX 77446, USA

{lhuang,niranasinghe}@pvamu.edu, T Clee@acm.org

Abstract. Accurate simulation of wave motion for the modeling and
inversion of seismic wave propagation is a classical high-performance
computing (HPC) application using the finite difference, the finite ele-
ment methods and spectral element methods to solve the wave equations
numerically. The paper presents a new method to improve the perfor-
mance of the seismic wave simulation and inversion by integrating the
deep learning software platform and deep learning models with the HPC
application. The paper has three contributions: 1) Instead of using tradi-
tional HPC software, the authors implement the numerical solutions for
the wave equation employing recently developed tensor processing capa-
bilities widely used in the deep learning software platform of PyTorch. By
using PyTorch, the classical HPC application is reformulated as a deep
learning recurrent neural network (RNN) framework; 2) The authors cus-
tomize the automatic differentiation of PyTorch to integrate the adjoint
state method for an efficient gradient calculation; 3) The authors build a
deep learning model to reduce the physical model dimensions to improve
the accuracy and performance of seismic inversion. The authors use the
automatic differentiation functionality and a variety of optimizers pro-
vided by PyTorch to enhance the performance of the classical HPC appli-
cation. Additionally, methods developed in the paper can be extended
into other physics-based scientific computing applications such as com-
putational fluid dynamics, medical imaging, nondestructive testing, as
well as the propagation of electromagnetic waves in the earth.

Keywords: Machine learning · Inverse problem · Wave propagation

1 Introduction

Physical simulation and inversion are classical scientific computing applications
to discover the physical phenomenon and reveal the underlying properties. The
simulation solves the partial differential equations (PDE) that governs the phys-
ical phenomenon using numerical approximation methods, while the inversion
applies the gradient-based optimizations to find the underlying properties by
minimizing the observed data and the simulated results. The entire process takes

c© Springer Nature Switzerland AG 2020
J. Nichols et al. (Eds.): SMC 2020, CCIS 1315, pp. 3–19, 2020.
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significant computing resources to achieve the satisfied accuracy. However, the
inverse problem is naturally challenging since it is ill-posed and nonlinear for
most cases.

Recent advances in high-performance tensor processing hardware and soft-
ware are providing new opportunities for accelerated linear algebra calculations
as used in machine learning, especially for deep learning neural networks, that
contributes significantly to the success of data science. Such calculations are
also at the heart of many simulations of physical systems such as wave propa-
gation. The use of tensor processing in neural networks, with its need for back-
propagation through multi-layered networks, has led to capabilities for automatic
differentiation [1] for gradient calculations in deep learning software.

Motivations: The motivations of the work have twofold. The first one is to
understand the new deep learning software package such as PyTorch and Ten-
sorFlow, and their capacity of solving a scientific computational problem. Espe-
cially, we are interested in how to model the traditional partial differential equa-
tions (PDEs) used in the scientific computational problem with a deep learning
model. The other is to study how to integrate the machine learning models that
are data-driven into the scientific computational model that are physics-driven.
The differentiable programming has the potential to smoothly integrate them
together with a global optimization. The authors believe the study will lead to
more interesting research findings in the topic of Scientific Machine Learning
(SciML) and to find an efficient way to combine the power of these two different
methods to facilitate scientific discovery.

In this paper, we study how to use the tensor-based machine learning soft-
ware to formulate the physical simulation and to compute the gradients for
optimizations to solve the inverse problem. We use the seismic wave propaga-
tion simulation and the Full Wave Inversion (FWI) as the physical case study.
We have adapted the techniques of others in this area of wave propagation [2,3]
to demonstrate how direct finite difference integration can be implemented via a
deep learning software platform, allowing the gradients calculated by automatic
differentiation to be used for the FWI of seismic reflection survey data as an
augmentation to the well-known PySIT [4] seismic research platform.

We summarize the paper’s contributions in the following:

i) We formulate the PDE solver in the seismic forward model using the Recur-
rent Neural Network (RNN) implemented with the deep learning software
package PyTorch, which allows us to take advantages of the tensor process-
ing software and its accelerator implementation.

ii) We apply the automatic differentiation implemented in PyTorch to solve the
seismic inverse problem to uncover the earth’s interior physical properties.

iii) We improve the automatic differentiation efficiency by creating a hybrid
back propagation method with the adjoint-state method to calculate the
gradients.

iv) We implement an AutoEncoder network to reduce the dimensions of the
inverted parameters to argument the convergence process and get more
accurate results for the ill-posed problem.
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2 Wave Equations and RNN

2.1 Wave Equations

The wave motion is governed by physical rules that can be expressed in the
following partial differential equation (PDE) (1) and the boundary conditions
(2) and (3). We use the 1D scalar wave equation for simplicity purpose in this
paper:

1
c2(x)

∂2u(x, t)
∂t2

− ∂2u(x, t)
∂x2

= f(x, t) (1)

1
c(0)

∂u(0, t)
∂t

− ∂u(0, t)
∂x

= 0 (2)

1
c(1)

∂u(1, t)
∂t

− ∂u(1, t)
∂x

= 0 (3)

where c(x) is the spatial velocity distribution, u(x, t) is the wave field distribution
in space and time, and f(x, t) is the energy source distribution in space and time.

The Eq. (1) can be solved numerically using a finite difference approximation:

f(x, t) = −u(x − Δx, t) − 2u(x, t),+u(x + Δx, t)
Δx2

+
1
c2

u(x, t − Δt) − 2u(x, t) + u(x, t + Δt)
Δt2

.

(4)

After factoring, the Eq. (4) can be expressed as

u(x, t + Δt) = f(x, t)c2Δt2 + (2u(x, t) − u(x, t − Δt))

+c2
Δt2

Δx2
(u(x − Δx, t) − 2u(x, t) + u(x + Δx, t))

(5)

which shows that the next wave field in time u(x, t+Δt) can be calculated based
on the current and prior wave fields, as well as spatial neighbors in the current
wave field. The wave motion simulation follows the time sequence to produce
the next state based on the prior ones, which is similar to the Recurrent Neural
Network (RNN) in deep learning to model a time sequence function.

2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is used to model the pattern in a sequence of
data, mostly in time sequence. In recent years, RNN and its variants have been
applied successfully to problems such as speech recognition, machine translation,
and text-to-speech rendering. It has an internal cell that repeatedly processes an
input, carries a hidden state, and produces an output at each step. The RNN cell
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can be designed to be simple or complex to model a problem with a forgettable
memory mechanism (Long Short-Term Memory (LSTM) [5]) or/and a gating
mechanism (Gated Recurrent Unit (GRU) [6]).

Fig. 1. A Simple RNN Model (a) with feedback loop, and (b) with loop unfolded

Figure 1(a) shows a typical RNN structure that repeatedly takes an input,
updates its hidden state, and produces an output at every step. The RNN model
can be unfolded as shown in Fig. 1(b) that learns the recurrence relationship from
a sequence of data. The hidden state hi remembers the prior state of the process
and is updated at each step. The hidden state enables RNN to learn the temporal
relationships among the inputs since most of the time sequence data do contain
temporal patterns. LSTM allows RNN to forget long-term relationships built up
in the hidden state and emphasizes the short-term relationships, which can be
useful for many cases.

A simple RNN can be expressed in the Eq. (6):

ht = σh(Whxt + Whht−1 + bh)
yh = σy(Wyht + by)

(6)

where xt is the input, ht is the hidden state, W is the weights, b is the bias, and
σ is the activation function.

Looking back to the Eq. (5), there are two hidden states u(x, t) and u(x, t −
Δt) if we can restructure the finite difference method using an RNN. There is
also a spatial stencil relationship of neighboring velocity distribution. We define
a new function F with input of f(x, t), two hidden states u(x, t) and u(x, t− 1),
and the constant velocity distribution c:
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F (f(x, t), u(x, t), u(x, t − 1), c)

= f(x, t)c2Δt2 + (2u(x, t) − u(x, t − 1))

+ c2
Δt2

Δx2
(u(x − 1, t) − 2u(x, t) + u(x + 1, t)).

(7)

Then, the Eq. (5) can be restructured as an RNN format:

ht+1 = σ(F (f(t), h(t), h(t − 1), c))
yt+1 = P (ht+1)

(8)

where P is the projection function to get the sample of a trace from a receiver.
The Eq. (8) is then a non-learnable, deterministic physical solution represented
as the deep learning RNN model. Figure 2 shows the RNN model we designed
that solves the wave equation with four inputs f(x, t), h(t), h(t − 1), and c, the
velocity distribution which is constant in the equation. The output yt is the trace
sample of a receiver at each time step.

Fig. 2. A RNN model for wave equation

2.3 PyTorch RNN Implementation

The wave equation RNN model we designed in Fig. 2 enables us to utilize the
deep learning software platform to solve the wave equations. The benefits of using
a deep learning model to represent an HPC application include: (1) we will be
able to leverage the HPC implementation of the deep learning model exploiting
the advantages of GPUs/multicores and vectorization for better performance;
(2) have an automatic gradients calculation using the built-in automatic differ-
entiation package in deep learning; (3) utilize the variety of built-in optimizers
to apply the gradients to find the global/local optimums; (4) use the data- and
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model- parallelism framework implemented in deep learning package to run the
application on a HPC cluster.

The following shows a code snippet of our RNN-similar implementa-
tion of wave equation using PyTorch. There are two classes derived from
torch.nn.Module for RNN cell and RNN driver respectively. We called them
Wave PGNNcell and Wave Propagator in our code. The Wave PGNNcell imple-
mented a cell function in RNN that computes the wavefield at a time step. The
Wave Propagator iterates over all time steps and takes the Ricker source wave-
form sample as the input at each time step. The hidden state (self.H) contains
the next and current wavefields, which are fed into the cell for the next iteration.
The trace is collected by projecting the current wavefield based on the receiver
location. The program returns the simulated wavefield and sampled trace at the
end.
class Wave PGNNcell ( torch . nn . Module ) :

def forward ( s e l f , H, s r c ) :
uC, uP = [ H[ 0 ] , H[ 1 ] ]
. . .
return [ uN,uC ]

class Wave Propagator ( torch . nn . Module ) :
s e l f . c e l l = Wave PGNNcell (C, c on f i g )

def forward ( s e l f ) :
us = [ ] # l i s t of output wave f i e l d s
t r a c e s = [ ]
rcv = s e l f . r c v r s
for i t in range ( s e l f . nt ) :

s e l f .H = s e l f . c e l l . forward ( s e l f .H, s e l f . ws [ i t ] )
us . append ( s e l f .H [ 0 ] . detach ( ) . numpy( ) )
# Extract wave f i e l d sample at each rece i ver
samps = rcv . sample ( s e l f .H [ 0 ] . c l one ( ) )
t r a c e s . append ( samps )

t r c = torch . s tack ( t race s , dim=1)
return us , t r c

2.4 Seismic Wave Simulation

For seismic wave simulation, we use our RNN model to simulate the acoustic
wave propagation for the scalar wave equation. We create a “true” synthetic
model and an initial model, which can be a smoothed version of the true model
or some other separately chosen function. We use the Ricker wavelet as a wave-
form for one or more energy sources (shots) and create an array of receivers for
collecting traces. We assume the constant density in these models.

As we stated earlier, one benefit of using deep learning software is to take
advantage of its multiple CPUs and GPUs implementation. We only need to spec-
ify which devices the code will operate on and define tensors to these devices. All
remaining device-specific implementation and optimizations are done internally
by PyTorch. We do not need to use CUDA or OpenACC to port the code to
these devices.

Another benefit is to use the data-parallelism implemented in PyTorch. We
can parallelize the code by the number of the sources/shots to run the code on
multiple GPUs and distributed clusters.
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In our implementation, we use PyTorch1 1.5 to build the RNN model.
PyTorch is an open source machine learning framework developed by Face-
book by merging Torch and Caffe2, which supports a variety of hardware plat-
forms including multiple CPUs, GPUs, distributed systems, and mobile devices.
Besides the machine learning and deep learning functions, one unique feature
of PyTorch is that it contains a just-in-time compiler to optimize the code if it
complies with TorchScript, which is a subset of Python. It has a built-in auto-
matic differentiation package for calculating derivatives, as well as a distributed
training module to train a model on a HPC cluster. PyTorch has both Python
and C++ frontends.

Figure 3 shows a 1D seismic Velocity Inversion case applying our physics-
ruled RNN implementation. The Fig. 3(a) shows a true synthetic velocity model
and an initial model; Fig. 3(b) shows the inverted model comparing with the
true model (up) and a slightly smoothed final inverted model (down); Fig. 3(c)
shows the comparison of the true traces and the inverted traces; and Fig. 3(d)
shows the wavefield on how the seismic wave propagates with respect to space
and time.

(a) a True Model and an Initial Model (b) The Inverted Model Comparison

(c) Trace Comparison (d) Wavefield

Fig. 3. Applying RNN for 1D seismic velocity inversion

1 https://pytorch.org/.

https://pytorch.org/
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The 1D inversion experiment finds a close-to the true model solution after 100
iterations. We use Adam optimizer [7] with L2 regularization. We are currently
working on 2D cases by revising PySIT package. We continue performing more
testing cases to evaluate the performance with both data and model parallelism
provided by PyTorch on a CPU cluster and multiple GPUs.

3 Differentiable Programming

3.1 Automatic Differentiation and Adjoint-State Method

The automatic differentiation (AD) is also called algorithmic differentiation that
calculates the derivatives of any arbitrary differentiable program. Unlike using
the numerical differentiation of the adjoint state method that is an approxi-
mation to calculate the derivatives, the automatic differentiation returns the
exact answer of the derivatives, though subject to the intrinsic rounding error.
Machine learning software such as TensorFlow and Pytorch all have the built-in
implementation of AD as the core functionality of backpropagation to optimize
machine learning models. Accurate gradients are critical to the gradient-based
optimizations used in both scientific computing and machine learning.

In order to calculate the derivatives of any differentiable programs, AD needs
to store all operations on the execution path along with the intermediate results.
It then propagates derivatives backward from the final output for every single
operation connected with the chain rule. For large scale application, AD faces
the challenge of meeting the demands of fast-growing storage in proportion to
the executed operations. Furthermore, the individual derivative function for each
operation also slows down the computation with intrinsic sequential execution.
More work needs to be done if AD can be directly applied to a real scientific
application.

Computationally expensive scientific applications typically use the adjoint
state method to calculate the gradient of a function with much better compu-
tation efficiency, although it is a numerical approximation. In FWI, the adjoint
state method calculates the derivative of a forward function J(m) that depends
on u(m). The forward function J can be defined using h, as following [8]:

J(m) = h(u(m),m) (9)

where m is the model parameter, which belongs to the model parameter space
M and u belongs to the state variable space, U. The state variables, u follow
the state equations outlined with the mapping function, F, which is also known
as the forward problem or forward equation [8]:

F (u(m),m) = 0. (10)

The mapping function F is mapping from U * M to U and is satisfied by the
state variable u. If the condition F(u, m) = 0 is satisfied, the state variable u
becomes a physical realization. Then, the adjoint state equation can be given as
following, where λ is the adjoint state variable and ũ is any element of U [8]:
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[
δF (u,m)

δũ
]∗λ =

δh(u,m)
δũ

. (11)

This adjoint-state gradient calculation involves computing the reverse-time
propagated residual wavefield, combining with the saved forward-propagated
wavefield snapshots at specified time intervals to provide adjustments to the
medium properties (the gradient) at each spatial mesh point. In summary, the
forward propagation computes data observations representing the response of
the model, and the residual between the model response and actual observed
data is backward propagated and combined with the forward model response to
compute adjustments to the current model estimate.

Intervening in the calculation of the gradient in this manner allows for man-
agement of the required computational resources by saving the forward wave-
fields only as often as numerically required, explicitly managing data resources
through staging to disk or check-pointing as needed, implementing shot-level
parallelism, and other specially tailored techniques.

3.2 Extended Automatic Differentiation

A difficulty with the auto-differentiation (AD) procedure is that memory require-
ments for the back-propagation graph can become excessive, as noted by
Richardson [2]. Applying chain-rule differentiation on elemental network nodes
over thousands of RNN time steps for a large mesh of physical parameter val-
ues is a reasonably-sized task for 1D problems, but the graph quickly becomes
intractable for 2D and 3D models. This issue renders impractical the use of pure
AD for such model inversion problems.

In order to solve the problem, we extended the AD backward process using
PyTorch AD workflow to integrate the adjoint-state method for the more efficient
gradient calculation. In PyTorch, we can customize the AD workflow by provid-
ing a backward function to calculate the gradients of any function. We need to
pass the required parameters of the forward function, the model parameters and
loss function to allow the backward function to pick up these parameters for the
adjoint-state calculation.

Control over this auto-differentiation process is available through use of a
PyTorch extension to the Autograd feature pictured conceptually in Fig. 4,
wherein the RNN layer of the network can be replaced by a forward propa-
gation loop and corresponding adjoint back-propagation loop for an equivalent
gradient calculation provided by the user. This alternative gradient calculation
can take advantage of well-known techniques in seismic inversion processing,
enabling existing performance enhancements to be applied using the extended
PyTorch capability for specially designed back-propagation.

In the present case, the physical medium properties to be optimized are pro-
vided to the “forward” wave propagation problem implemented using the pub-
licly available PySIT seismic inversion toolkit [4], creating a simulated seismic
response. The corresponding “backward” propagation consists in using the resid-
ual wavefield represented by the difference between the simulated data and the
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Fig. 4. Adjoint gradient: Automatic differentiation vs. Adjoint gradient calculation.
Differentiation respect to model parameters are replaced by gradients from adjoint
state in the backward automatic differentiation.

observed seismic trace data from the corresponding actual field data recording
(or recordings from a “true” model in our synthetic studies), and implement-
ing the “adjoint-state” solution to provide the required gradient of the model
parameters. Other implementations of wave propagation solutions may also be
used in this framework, such as spectral-element methods [9] for 2D, 3D and
spherical 3D wave propagation.

The beneficial end result is that traditional adjoint-state solution methods
are incorporated into the AD workflow, so that seismic inversion calculations can
be integrated within the broader deep learning process with efficient calculation.

4 Seismic Inversion

4.1 Seismic Inversion

Seismic Inversion [10] is the method to reconstruct the earth subsurface image
by inverting seismic data observed via the multiple distributed sensors on the
surface. It is typically implemented using the adjoint state method [8] to cal-
culate the gradients. As described in Sect. 2 and Sect. 3, by reconstructing the
forward problem using deep learning software, the seismic inversion problem can
be solved by the automatic differentiation package, a variety of optimizers pro-
vided by PyTorch, and a customized loss function. The automatic differentiation
package in PyTorch implements the methodology of automatic differentiation
by recording all the forward operations in sequence and performing backward
derivative computation based on the chain rule.

Figure 5 shows the workflow of seismic inversion. The initial model M0 is a
guess of the true model M that needs to be inverted. In these early experiments
using several shots of a synthetic seismic reflection survey over a small 2D Earth
model, we used for convenience an initial model guess that is a smoothed version
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Fig. 5. The full waveform inversion workflow

of the true model. The seismic traces are either observed via distributed sensors
on top of the earth surface in the real-world application or are simulated using
the seismic wave forward function in this paper. The residual is obtained by
comparing the synthetic data and observed data. The gradient ∂u

∂M is calculated
based on the residual with respect to the initial model. The gradients are used
by a gradient-based optimizer to update the initial model to get a step close
to the real model. The entire process ends when the initial model and the true
model are converged or exceeded the specified number of iterations.

4.2 AutoEncoder for Dimensionality Reduction

The seismic inversion process needs to uncover the physical properties at every
point represented in the geological space, which quickly leads to a large number
of model parameters to optimize in the traditional FWI process. The nature of
the nonlinear and ill-posed inverse problem often falls into the local minimum
traps. It is a sound solution to apply the dimensionality-reduction technique to
reduce the optimization parameters to improve the optimization accuracy by
engaging with machine learning models.

Since we have customized the automatic differentiation workflow by integrat-
ing the adjoint state method for the FWI gradients (described in Sect. 3), it is
now feasible to integrate the machine learning models into the FWI workflow
and keep the program differentiable. Since the AutoEncoder A(x) is differentiable
and the forward model F (x) is differentiable, the composition of the F (A(x))
is differentiable. We choose the AutoEncoder as the dimensionality-reduction
method and apply it before the forward model as shown in Fig. 6.

The AutoEncoder contains 743,938 parameters as shown in Fig. 7a and b. The
AutoEncoder is an unsupervised learning model that compresses the information
representation of the input data to a sparse latent variable with less dimensions
at the middle of the encoded layer. It then reconstructs the data from the encoded
latent variable to the original or enhanced data. The compression process is
called encoder and the reconstruction is called decoder. The encoder learns how
to compress the input data and describes it with the latent variable, while the
decoder learns how to reconstruct the data from the latent variable.



14 L. Huang et al.

Fig. 6. The full waveform inversion workflow
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(a) The AutoEncoder Network Structure

(b) The AutoEncoder Model Parameters

Fig. 7. Traditional seismic velocity inversion

We start the AutoEncoder training by generating a large number of random
seismic velocity models. In this work, we are using some simple and flat velocity
layers representing the velocities of different earth interiors including water and
rocks. Specifically, these models contain one or more low velocity layers in the
middle or bottom of these layers that is challenging for the low velocity inversion.
All of these models have the fixed dimensions of 60× 80. As indicated in Fig. 7a,
the AutoEncoder has two components: a encoder and a decoder. The encoder
compresses the input model with dimension of 60× 80 to an encoded latent
variable with dimension of 8× 10, which is 1/60 of the original dimension. The
latent variable is then decompressed by the decoder to restore to its original
dimension.

The loss function we used to train the AutoEncoder is the mean-square-error
(MSE) loss and the optimizer is Adam with learning rate of 0.001. The batch
size used is 128. The loss values during the training process is shown in Fig. 8.
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Fig. 8. The autoEncoder training loss

Figure 6 shows the AutoEncoder enhanced FWI process, where the AutoEn-
coder is inserted before the forward function simulation starts. Note that the
encoder is only applied to the first iteration to get the encoded latent variable.
For the rest of optimization iterations, the decoder is applied to decompress the
encoded latent variable to get a new velocity model with the original dimension.
During the gradient-based optimization process, the gradients are calculated
with respected to the encoded latent variable, instead of the original model,
which reduced the dimensionality of the optimization search space to 1/60. We
use the MSE loss and Adam optimizer during the process.

4.3 Results

PyTorch has a list of optimizers including Adam [7], RMSprop [11], stochastic
gradient descent (SGD), Adadelta [12], Adagrad [13], LBFGS, and their vari-
ants. The learning rate, scheduler and regularizations can be specified to fit
different optimization problems. There are also multiple regression and classifi-
cation loss functions implemented in PyTorch. All of these packages provide a
rich environment to solve inverse problems.

In our implementation, we have demonstrated how to invoke the extended
automatic gradient calculation for the velocity model. We choose the Adam
optimizer and the MSE loss function to compare the misfit of the simulated
traces and observed traces after each iteration of the forward model. The partial
derivative (the gradient) of the loss function with respect to the initial model
and the encoded latent variable is calculated by the automatic differentiation
process, which is applied by the optimizer to minimize the misfit. These iterations
gradually find an approximation of the true velocity distribution.

Figure 9 and Fig. 10 show the differences of the traditional FWI and the
AutoEncoder enhanced FWI results. Fig. 9(a) shows the initial model, the true
model, and the inverted model; the loss graph Fig. 9(b) shows the loss values
(at different scales) after each optimization iteration, and Fig. 9(c) shows the
difference between the inverted model and the initial model (top), as well as
the difference between the inverted model and the true model. It appears that
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(a) The Initial, True and Inverted Model Comparison

(b) Loss Function Value (c) Differences

Fig. 9. Traditional seismic velocity inversion

the traditional FWI does not optimize well in the low velocity layer case after
40 iterations ended with a high loss value, which falls into a local trap. The
AutoEncoder-enhanced FWI discovers the low velocity layer very well and con-
tinues to optimize the misfit for all 100 iterations. The difference graphs also con-
firm that the AutoEncoder case identifies all layers well showing less structured
misfits. Noticeably, there are also less artifacts introduced in the AutoEncoder
enhanced FWI compared with the traditional FWI.

As described in Sect. 3, the automatic differentiation provided by the PyTorch
software does not provide sufficient efficiency to solve the FWI 2D problem. The
gradients calculated for the whole program takes too long and too much space
to store them. We use the hybrid method describe in Sect. 3.2 to overcome the
problem by incorporating the adjoint state method. As the result, the gradient
calculation using the hybrid approach achieves both accuracy and efficiency,
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(a) The Initial, True and Inverted Model Comparison

(b) Loss Function Value (c) Differences

Fig. 10. The AutoEncoder enhanced seismic velocity inversion

which is feasible to be used for a large scale scientific computation problem
integrating with machine learning models.

5 Discussion

There are a few of points that worth noting for the work. The first is that the
automatic differentiation is key for differentiable programming, which can bridge
the physics-based scientific computing with the machine learning (ML)/artificial
intelligence (AI) technologies. ML/AI methods do not have physics principles
built in that may create an infeasible solution given the fact that most of the sci-
entific inverse problems may be ill-posed. In our prior work [14], the convergence
of ML with a scientific application without differentiable programming may not
find a generalized solution since optimizations of the two different methods are
disconnected.
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The second point we would like to make is that the automatic differentiation
needs additional improvements to make it feasible to other applications. In our
method, we integrate the adjoint-state method to make it feasible to solve a large
case, however the solution is an approximation. If the automatic differentiation
method can be more memory-efficient and parallelizable, it can be much more
useful to compute the exact gradients for the large complex problems.

The last point is the deep learning model AutoEncoder requires a revisit
to reduce the loss during decoding. Although it reduces the dimension by com-
pressing the input data into a sparse latent variable, the reconstruction is not
lossless. There are some errors introduced during the reconstruction process that
may hinder the optimization process. There is a trade-off to take into the con-
sideration when designing the convergence of ML/AI with scientific computing.
The good news is that there are many options to integrate them waiting for us
to explore.

6 Conclusion and Future Work

We have successfully demonstrated two case studies of restructuring the wave
equation using finite difference method in a deep learning RNN model framework
and an AutoEncoder enhanced FWI process. The benefits of the work include
fully utilizing the high-performance tensor processing and optimization capabil-
ities implemented in the deep learning package PyTorch, as well as the deep
integration of machine learning models with the inverse problem. By integrating
an HPC application with a deep learning framework with differential program-
ming, we can explore a large number of combinations of machine learning models
with physical numerical solutions to achieve better accuracy and efficiency.
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Abstract. Solving partial differential equations (PDE) is an indispens-
able part of many branches of science as many processes can be modelled
in terms of PDEs. However, recent numerical solvers require manual dis-
cretization of the underlying equation as well as sophisticated, tailored
code for distributed computing. Scanning the parameters of the underly-
ing model significantly increases the runtime as the simulations have
to be cold-started for each parameter configuration. Machine Learn-
ing based surrogate models denote promising ways for learning com-
plex relationship among input, parameter and solution. However, recent
generative neural networks require lots of training data, i.e. full sim-
ulation runs making them costly. In contrast, we examine the appli-
cability of continuous, mesh-free neural solvers for partial differential
equations, physics-informed neural networks (PINNs) solely requiring
initial/boundary values and validation points for training but no simula-
tion data. The induced curse of dimensionality is approached by learning
a domain decomposition that steers the number of neurons per unit vol-
ume and significantly improves runtime. Distributed training on large-
scale cluster systems also promises great utilization of large quantities of
GPUs which we assess by a comprehensive evaluation study. Finally, we
discuss the accuracy of GatedPINN with respect to analytical solutions-
as well as state-of-the-art numerical solvers, such as spectral solvers.

1 Introduction

Scientific neural networks accelerate scientific computing by data-driven meth-
ods such as physics-informed neural networks. One such prominent application is
surrogate modelling which is e.g. used in particle physics at CERN [1]. Enhanc-
ing neural networks by prior knowledge about the system makes the predic-
tion more robust by regularizing either the predictions or the training of neural
networks. One such prominent approach is a physics-informed neural network
(PINN) which makes use of either learning [2] or encoding the governing equa-
tions of a physical system into the loss function [3] of the training procedure.
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Surrogate models based on PINN can be seen as a neural solvers as the trained
PINN predicts the time-dependent solution of that system at any point in space
and time. Encoding the governing equations into the training relies on automatic
differentiation (AD) as it is an easy computing scheme for accessing all partial
derivatives of the system. However, AD also constrains the neural network archi-
tecture to use Ck+1 differentiable activation functions provided the highest order
of derivatives in the governing system is k. Furthermore, the computational cost
increases with the size of the neural network as the whole computational graph
has to be evaluated for computing a certain partial derivative. The main con-
tribution of this paper is three-fold. First, we introduce a novel 2D benchmark
dataset for surrogate models allowing precise performance assessment due to
analytical solutions and derivatives. Second, we improve the training time by
incorporating and learning domain decompositions into PINN. Finally, we con-
duct a comprehensive analysis of accuracy, power draw and scalability on the
well known example of the 2D quantum harmonic oscillator.

2 Related Works

Accelerated simulations by surrogate modelling techniques are carried out in
two main directions. Supervised learning methods require full simulation data
in order to train some neural network architecture, e.g. generative adversarial
networks [1] or autoencoders [4], to reproduce numerical simulations and might
benefit from interpolation between similar configurations. The latter basically
introduces a speedup with respect to numerical simulations, however generaliza-
tion errors might challenge this approach in general. In contrast, self-supervised
methods either embed neural networks within numerical procedures for solv-
ing PDE [5], or incorporate knowledge about the governing equations into the
loss of neural networks, so called physics-informed neural networks (PINN) [3].
The latter is can be seen as variational method for solving PDE. Finally, [2]
demonstrated joint discovery of a system (supervised learning) and adapting to
unknown regimes (semi-supervised learning). Recently, [6] proved convergence
of PINN-based solvers for parabolic and hyperbolic PDEs. Parareal physics-
informed neural networks approach domain decomposition by splitting the com-
putational domain into temporal slices and training a PINN for each slice [7]. We
are going to generalize that idea by introducing conditional computing [8] into
the physics-informed neural networks framework, hereby enabling an arbitrary
decomposition of the computational domain which is adaptively tuned during
training of the PINN.
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3 Methods

The governing equations of a dynamic system can be modeled in terms of non-
linear partial differential equations

ut + N (u;λ) = 0 ,

with ut = ∂u
∂t being the temporal derivative of the solution u of our system while

N denotes a non-linear operator that incorporates the (non-)linear effects of our
system. One example of such a system is the quantum harmonic oscillator,

i
∂ψ(r, t)

∂t
− Ĥψ(r, t) = 0 ,

where ψ(r, t) denotes the so-called state of the system in the spatial base and
Ĥ is the Hamilton-operator of the system. The systems state absolute square
|ψ(r, t)|2 is interpreted as the probability density of measuring a particle at a
certain point r in a volume V. Thus, |ψ(r, t)|2 has to fulfill the normalization
constraint of a probability density

∫
V

d3r |ψ(r, t)|2 = 1.

The Hamilton operator of a particle in an external potential is of the form

Ĥ = −1
2
Δ + V (r, t),

where Δ is the Laplace operator and V (r, t) is a scalar potential. The first term is
the kinetic energy operator of the system and V (r, t) its potential energy. In this
work, we use the atomic unit system meaning that � = me = 1. Ĥ is a Hermitian
operator acting on a Hilbertspace H. In this work we are focusing on the 2D
quantum harmonic oscillator (QHO), which is described by the Hamiltonian

Ĥ = −1
2

(
∂2

∂x2
+

∂2

∂y2

)
+

ω2
0

2
(x2 + y2) = Ĥx + Ĥy.

where x ∈ R and y ∈ R denote spatial coordinates. The solution of the QHO
can be determined analytically and is the basis for complicated systems like the
density function theory (DFT). Therefore the QHO is very well suited as a test
system which allows a precise evaluation of the predicted results. In addition, the
QHO can also be used as a test system for evaluating the results. Furthermore,
the QHO is classified as linear parabolic PDE, which guarantees the functionality
of the chosen PINN approach according to Shin et al. [6]. Figure 1 shows the
analytic solution of the quantum harmonic oscillator over time.
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Fig. 1. Analytic solution of the quantum harmonic oscillator

3.1 Physics-Informed Quantum Harmonic Oscillator

The solution ψ(x, y, t) of our quantum harmonic oscillator at some position x, y
and time t is approximated by a neural network f : R

3 → C, i.e.

ψ̂(x, y, t) = f(x, y, t) .

In this work, we model f by a simple multilayer perceptron (MLP) of 1 ≤ l ≤ m
layers, a predetermined number of neurons per layer kl and respective weight
matrices W l ∈ R

kl×kl

yl = g(W lyl−1) ,

with y0 = (x, y, t) and ym = ψ̂(x, y, t). The training of Physics-informed neural
networks relies on automatic differentiation which imposes some constraints on
the architecture. In our case, the network has to be 3 times differentiable due
to the second-order partial derivatives in our QHO (Eq. 3). This is achieved by
choosing at least one activation function g which fulfills that property (e.g. tanh).
The training of the neural network is realized by minimizing the combined loss
L defined in Eq. (2). The three terms of L relate to the error of representing the
initial condition L0, the fulfillment of the partial differential equation Lf as well
as boundary condition Lb.

L = αL0(T0) + Lf (Tf ) + Lb(Tb) (1)

L0 is the summed error of predicted real- u = real(ψ) and imaginary- v =
imag(ψ) of the initial state with respect to groundtruth real- ui and imaginary
part vi at points T′. We introduce a weighting term α into L allowing us to
emphasize the contribution of the initial state.

L0(T0) =
1

|T0|

|T0|∑
i=1

∣∣u (
ti0, x

i
0, y

i
0

)
− ui

∣∣2 +
1

|T0|

|T0|∑
i=1

∣∣v (
ti0, x

i
0, y

i
0

)
− vi

∣∣2
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The boundary conditions (Eq. 3) are modelled in terms of Lb at predeter-
mined spatial positions Tb at time t.

Lb (Tb, t) = 1 −
(∫∫

Tb

(
u(t, x, y)2 + v(t, x, y)2

)
dxdy

)2

Lf is divided into real- and imaginary part, such that fu represents the
correctness of the real- and fv the correctness of imaginary part of the predicted
solution. This loss term is computed on a set Tf of randomly distributed residual
points that enforce the validity of the PDE at residual points Tf .

Lf (Tf ) =
1

|Tf |

|Tf |∑
i=1

∣∣fu

(
tif , xi

f , yi
f

)∣∣2 +
1

|Tf |

|Tf |∑
i=1

∣∣fv

(
tif , xi

f , yi
f

)∣∣2

fu = −ut − 1
2
vxx − 1

2
vyy +

1
2
x2v +

1
2
y2v

fv = −vt +
1
2
uxx +

1
2
uyy − 1

2
x2u − 1

2
y2u

3.2 GatedPINN

Numerical simulations typically require some sort of domain decomposition in
order to share the load among the workers. physics-informed neural networks
basically consist of a single multilayer perceptron network f which approximates
the solution of a PDE for any input (x, y, t). However, this also implies that
the capacity of the network per unit volume of our compute domain increases
with the size of the compute domain. This also implies that the computational
graph of the neural network increases respectively meaning that the time and
storage requirements for computing partial derivatives via automatic differenti-
ation increases, too. This limits the capacity of recent physics-informed neural
network.

We will be tackling these challenges by introducing conditional computing
into the framework of physics-informed neural networks. Conditional Computing
denotes an approach that activate only some units of a neural network depending
on the network input [9]. A more intelligent way to use the degree of freedom
of neural networks allows to increase the network capacity (degree of freedom)
without an immense blow up of the computational time [8]. [7] introduced a
manual decomposition of the compute domain and found that the capacity of
the neural network per unit volume and thus the training costs are reduced.
However, this approach requires another coarse-grained PDE solver to correct
predictions. A decomposition of the compute domain can be learned by utilizing
the mixture of expert approach [8] based on a predetermined number of so-called
experts (neural networks). A subset k of all N experts are active for any point
in space and time while the activation is determined by gating network which
introduces an adaptive domain decomposition. The combination of mixture of
experts and physics-informed neural networks leads to a new architecture called
GatedPINN.
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Architecture. The architecture comprises of a gating network G(x, y, t) that
decides which expert Ei(x, y, t) to use for any input (x, y, t) in space and time
(see Fig. 2). Experts Ei with 1 ≤ i ≤ N are modelled by a simple MLP con-
sisting of linear layers and tanh activation functions. The predicted solution ψ̂
of our quantum harmonic oscillator (QHO) becomes a weighted sum of expert
predictions Ei

ψ̂(x, y, t) =
N∑

i=1

G(x, y, t)i · Ei(x, y, t) .

GatedPINN promise several advantages compared to the baseline PINN:
First, the computation of partial derivatives by auto differentiation requires
propagating information through a fraction k/N of the total capacity of all
experts. That allows to either increase the computational domain and/or increase
the overall capacity of the neural network without a blow up in computational
complexity.

Fig. 2. Visualization of the Gated-PINN architecture

Similarly to [8], an importance loss LI = wI ·CV (I(x, y, t))2 penalizes uneven
distribution of workload among all N experts:

L(T , θ) = L0(T0, θ) + Lf (Tf , θ) + Lb(Tb, θ) +
∑

(x,y,t)∈T

LI(X) , (2)

given T = T0 ∪ Tb ∪ Tf . The importance loss LI(X) requires the computation
of an importance measure I(X) =

∑
x∈X G(x, y, t). The coefficient of variation

CV (z) = σ(z)/μ(z) provided I(X) quantifies the sparsity of the gates and thus
the utilization of the experts. Finally, coefficient wI allows us to weight the
contribution of our importance loss with respect to the PDE loss. The importance
loss is defined as follows:

LI(X) = wI · CV (I(X))2 .
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Adaptive Domain Decomposition. A trainable gating network G allows us
to combine the predictions of k simple neural networks for approximating the
solution of our QHO at any point in space x, y and time t. Hereby, we restrict
the size of the computational graph to k-times the size of each individual neural
network Ei with 0 ≤ i ≤ k.

G(x, y, t) = Softmax(KeepTopK(H(x, y, t, ω)))

and basically yields a N dimensional weight vector with k non-zero elements
[8]. The actual decomposition is learnt by the function H:

H(x, y, t) = ([x, y, t] · Wg) + StandardNormal() · Softplus(([x, y, t]T · Wnoise)) .

The noise term improves load balancing and is deactivated when using the
model. Obviously, this gating results in a decomposition into linear subspaces due
to Wg. Non-linear domain decomposition can now be realized by replacing the
weight matrix Wg by a simple MLP NNg, i.e. ([x, y, t]·Wg) becomes NNg(x, y, t).
This allows for more general and smooth decomposition of our compute domain.

4 Results

All neural networks were trained on the Taurus HPC system of the Technical
University of Dresden. Each node consists of two IBM Power9 CPUs and is
equipped with six Nvidia Tesla V-100 GPUs. We parallelized the training of the
neural networks using Horovod [10] running on MPI communication backend.
Training of the Physics-informed neural network, i.e. solving our QHO, was
done on batches consisting of 8.500 points of the initial condition (i.e. |T0|),
2.500 points for the boundary condition (i.e. |Tb|) and 2 million residual points
(i.e. |Tf |).

4.1 Approximation Quality

Training of physics-informed neural networks can be seen as solving partial dif-
ferential equations in terms of a variational method. State-of-the-art solvers for
our benchmarking case, the quantum harmonic oscillator, make us of domain
knowledge about the equation by solving in Fourier domain or using Hermite
polynomials. We will be comparing both, state-of-the-art spectral method [11] as
well as physics-informed neural networks, to the analytic solution of our QHO.
This enables a fair comparison of both methods and allows us to quantify the
approximation error.

For reasons of comparison, we use neural networks with similar capacity.
The baseline model consists of 700 neurons at 8 hidden layer. The GatedPINN
with linear and nonlinear gating consists of N = 10 experts while the input
is processed by one expert (k = 1). The experts of the GatedPINN are small
MLP with 300 neurons at 5 hidden layers. Furthermore, the gating network for
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the nonlinear gating is also a MLP. It consists of a single hidden layer with 20
neurons and the ReLu activation function.

The approximation error is quantified in terms of the infinity norm:

err∞ = ||ψ̂ − ψ||∞ , (3)

which allow us to judge the maximum error while not being prone to sparseness
in the solution. The relative norm is used for quantifying the satisfaction of the
boundary conditions. The relative norm is defined with the approximated surface
integral and the sampling points from dataset Tb as follows

errrel = ||1 −
∫∫

Tb

ψ dxdy|| · 100% . (4)

Table 1. Real part statistics of the infinity norm

Approach err∞ Min Max

Spectral solver 0.01562± 0.0023 5.3455e−7 0.0223

PINN 0.0159± 0.0060 0.0074 0.0265

Linear GatedPINN 0.0180± 0.0058 0.0094 0.0275

Nonlinear GatedPINN 0.0197± 0.0057 0.0098 0.0286

Table 2. Imaginary part statistics of the infinity norm

Approach err∞ Min Max

Spectral solver 0.01456± 0.0038 0.0000 0.0247

PINN 0.0144± 0.0064 0.0034 0.0269

Linear GatedPINN 0.0164 ± 0.0069 0.0043 0.0296

Nonlinear GatedPINN 0.0167± 0.0066 0.0046 0.0291

Physics-informed neural networks as well as GatedPINN are competitive in
quality to the spectral solver for the quantum harmonic oscillator in the chosen
computational domain as can be seen in Fig. 3. The periodic development in the
infinity norm relates to the rotation of the harmonic oscillator which manifests
in the real as well as imaginary at different points in time (see Fig. 1).
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Fig. 3. Quality of the real part and imaginary part predictions over time in comparison
to the spectral solver in reference to the analytically solution

Figure 4 and Fig. 5 show the time evolution of the PINN predictions. The
prediction of the baseline model and the GatedPINN models show the same
temporal evolution as in Fig. 1.

Fig. 4. Real Part predictions of the Baseline and the GatedPINN models
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Fig. 5. Imaginary Part predictions of the Baseline and the GatedPINN models

4.2 Domain Decomposition

Table 3. Training time of physics-informed neural networks is significantly reduced by
incorporating a domain decomposition into the PINN framework.

Model Parameters L Training time

PINN 3,438,402 2.51e−4 29 h 19 min

Linear GatedPINN 3,627,050 2.115e−4 17 h 42min

Nonlinear GatedPINN 3,627,290 2.270e−4 18 h 08 min

Table 3 shows the convergence of the PINN-Loss of the baseline, the GatedPINN
with linear and nonlinear gating. The Baseline model and the GatedPINN mod-
els are trained with 2 million residual points and with the same training setup
in terms of batch size, learning rate. Both, the GatedPINN with linear and
nonlinear gating have converged to a slightly lower PINN-Loss as the baseline
model. However, the training times of the Gated PINN are significantly shorter
although the GatedPINN models have more parameters than the baseline model.
These results show the efficient usage of the model capacity and automatic dif-
ferentiation of the GatedPINN architecture. However, both the training time of
the PINN and the GatedPINN approach is not competitive to the solution time
of the spectral solver (1 min 15 sec). The full potential of PINN can only be
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used when they learn the complex relationship between the input, the simula-
tion parameters and the solution of the underlying PDE and thus restarts of the
simulation can be avoided.

In Table 1 and 2 we see that the approximation quality of the baseline model
is slightly better than the GatedPINN models although the GatedPINN models
have converged to a slightly smaller loss L. However, the GatedPINN (linear:
0.329%, nonlinear: 0.268%) satisfies the boundary condition better than the
baseline model (1.007%). This result could be tackled by introducing another
weighting constant similarly to α to Eq. 2.

The learned domain decomposition of the proposed GatedPINN can be seen
in Fig. 6. The nonlinear gating, which is more computationally intensive, shows
an more adaptive domain decomposition over time than the model with linear
gating. The linear gating converges to a fair distribution over the experts. The
nonlinear approach converges to a state where the experts are symmetrically
distributed in the initial state. This distribution is not conserved in the time
evolution.

Fig. 6. Learned domain decomposition by the GatedPINN with linear and non-linear
gating. The squared norm of the solution ψ is visualized as a contour plot

4.3 Scalability and Power Draw

Training of neural solvers basically relies on unsupervised learning by validating
the predicted solution ψ on any residual point (Eq. 2). This means that we only
need to compute residual points but do not have to share any solution data. We
utilize the distributed deep learning framework Horovod [10]. The scalability
analysis was done during the first 100 epochs on using 240 batches consisting of
35000 residual points each and 20 epochs for pretraining. The baseline network
is a 8-layer MLP with 200 neurons per layer. Performance measurements were
done by forking one benchmark process per compute node.
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Fig. 7. Speedup comparison

Figure 7 compares the optimal with the actual speedup. The speedup S(k)
for k-GPUs was computed by

S(k) = tk/t1 ,

provided the runtime for 100 epochs of a single GPU t1 compared to the run-
time of k GPUs: tk. We found almost linear speedup, though the difference to
the optimum is probably due to the latency of the communication between the
GPUs and the distribution of residual points and gradient updates. The training
achieved an average GPU utilization of 95% ± 0.69% almost fully utilizing each
GPU. Memory utilization stays relatively low at an average of 65% ± 0.48%
while most of the utilization relates to duplicates of the computational graph
due to automatic differentiation.

Fig. 8. Power draw comparison

We also quantified the power draw relating to the training in terms of the
average hourly draw of all GPUs (See Fig. 8). Note that this rough measure omits
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the resting-state power draw of each compute node. We found an almost linear
increase in power draw when increasing the number of GPUs. This correlates
with the already mentioned very high GPU utilization as well as speedup. These
findings imply that total energy for training our network for 100 epochs stays the
same - no matter how many GPUs we use. Summarizing, Horovod has proven
to be an excellent choice for the distributed training of physics-informed neural
networks since training is compute bound. Note that the linear scalability has
an upper bound caused by the time needed to perform the ring-allreduce and
the splitting of the data.

4.4 Discussion

The experimental results of this paper agree with theoretical results on conver-
gence of PINNs for parabolic and elliptic partial differential equations [6] even
for large two-dimensional problems such as the quantum harmonic oscillator.
This benchmark dataset1 provides all means for a comprehensive assessment of
approximation error as well as scalability due to the availability of an analytic
solution while the smoothness of the solution can be altered by frequency ω
of the QHO. The approximated solution of Physics-informed neural networks
approached the quality of state-of-the-art spectral solvers for the QHO [11].
The training time of PINN or GatedPINN is not competitive to the runtime
of spectral solvers for one 2D simulation. However, PINN enable warm-starting
simulations by transfer learning techniques, integrating parameters (e.g. ω in our
case) or Physics-informed solutions to inverse problems [12] making that app-
roach more flexible than traditional solvers. The former two approaches might
tackle that challenge by learning complex relationships among parameters [13]
or adapting a simulation to a new configuration at faster training time than
learning it from scratch while the latter might pave the way for future experi-
mental usage. The GatedPINN architecture finally allows us to approach higher
dimensional data when training physics-informed neural networks by training
k sub-PINN each representing a certain fraction of the computational domain
at 1/k of the total PINN capacity. GatedPINN preserve the accuracy of PINN
while the training time was reduced by 40% (Table 3). This effect will become
even more evident for 3D or higher dimensional problems. Limiting the com-
putational blowup of PINN and retaining linear speedup (see Fig. 7) are crucial
steps towards the applications of physics-informed neural networks on e.g. three-
dimensional or complex and coupled partial differential equations.

5 Conclusion

Physics-informed neural networks denote a recent general purpose vehicle for
machine learning assisted solving of partial differential equations. These neural
1 The PyTorch implementations of the benchmarking dataset as well as the neural

solvers for 1D and 2D Schrodinger equation and pretrained models are available
online: https://github.com/ComputationalRadiationPhysics/NeuralSolvers.

https://github.com/ComputationalRadiationPhysics/NeuralSolvers
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solvers are solely trained on initial conditions while the time-dependent solution
is recovered by solving an optimization problem. However, a major bottleneck
of neural solvers is the high demand in capacity for representing the solution
which relates to the size, dimension and complexity of the compute domain.
In this work, we approach that issue by learning a domain decomposition and
utilizing multiple tiny neural networks. GatedPINNs basically reduce the number
of parameters per unit volume of our compute domain which reduces the training
time while almost retaining the accuracy of the baseline neural solver. We find
these results on a novel benchmark based on the 2D quantum harmonic oscillator.
Additionally, GatedPINN estimate high-quality solutions of the physical system
while the speedup is almost linear even for a large amount of GPUs.
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Abstract. This paper presents some of the current challenges in design-
ing deep learning artificial intelligence (AI) and integrating it with tra-
ditional high-performance computing (HPC) simulations. We evaluate
existing packages for their ability to run deep learning models and appli-
cations on large-scale HPC systems efficiently, identify challenges, and
propose new asynchronous parallelization and optimization techniques
for current large-scale heterogeneous systems and upcoming exascale sys-
tems. These developments, along with existing HPC AI software capa-
bilities, have been integrated into MagmaDNN, an open-source HPC
deep learning framework. Many deep learning frameworks are targeted
at data scientists and fall short in providing quality integration into
existing HPC workflows. This paper discusses the necessities of an HPC
deep learning framework and how those needs can be provided (e.g., as
in MagmaDNN) through a deep integration with existing HPC libraries,
such as MAGMA and its modular memory management, MPI, CuBLAS,
CuDNN, MKL, and HIP. Advancements are also illustrated through the
use of algorithmic enhancements in reduced- and mixed-precision, as
well as asynchronous optimization methods. Finally, we present illus-
trations and potential solutions for enhancing traditional compute- and
data-intensive applications at ORNL and UTK with AI. The approaches
and future challenges are illustrated in materials science, imaging, and
climate applications.
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1 Background

Deep learning (DL) has become one of the most prevalent technologies today.
Applications extend from image recognition to natural language processing.
While its commercial applications have garnered the efforts of major technol-
ogy companies, DL has proven vital to works in numerous scientific domains.

Some of these domain problems are vital to solving many of today’s global
issues—for instance, in solving modern, data-dense problems in climate science.
This field has seen several advancements with the recent integration of deep neu-
ral networks (DNNs). Ise et al. [1] propose a modern approach towards utilizing
neural networks to predict global temperature data. They further conclude that
the accuracy of their model increases with the number of input images used.
Thus, the model’s accuracy and utility grow with the amount of compute power
available. Wang et al. [2] provide further uses for DNNs in weather forecasting,
which compete with the current state-of-the-art, physically based simulations.
The neural networks can also reduce the computations necessary, as they possess
the ability to extend one trained network to similar environments, or train once,
and predict frequently.

Additionally, DL has proven useful in materials science, even leading the field
of materials informatics [3]. Feng et al. [4] were able to utilize deep networks to
predict material defects with an accuracy above 98%, even for small data sets.
However, these great accuracies require deep and/or pre-trained networks. As
with climate modelling, deep learning can be used to replace current physically
based simulations, which are expensive and/or do not scale well [5].

Providing high performance hardware and software stacks to facilitate deep
learning has become a focus in the high-performance computing (HPC) field.
An overview of the parallel algorithms and their challenges for distributed, deep
neural networks can be found in Ben-Nun and Toefler [6]. Large-scale modern
systems, such as the US DOE’s Summit, are fully loaded with high-performance
GPUs to support the compute-intensive nature of deep learning. Additionally,
some HPC distributed file systems under-perform in providing I/O for data-
hungry DL training [7]. Even in terms of sheer performance, many state-of-the-
art deep learning models and libraries fail to utilize a significant portion of the
maximum floating-point operations (FLOPs) rate of current top systems [8].
There is significant research in the area of accelerating DL on cloud and other
commercial systems, but these methods may not integrate well with varying
HPC technologies and modern scientific workflows.

One major area in which HPC can innovate deep learning is model par-
allelism. In many domain applications, networks can become large, leading to
growth beyond the memory of a single GPU. By utilizing existing HPC com-
munication standards, a robust model-parallel training standard needs to be
developed in addition to efficient implementations. Currently, several libraries
attempt to integrate model parallelism [9], but this requires extensive knowl-
edge of the code base, model, and hardware. There is an active research push
into further developing model parallel approaches [10–13].
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R. Stevens presented a vision of the landscape of machine learning as DOE
moves towards the exascale era [14], stressing the importance of machine learn-
ing as an integral part of DOE exascale applications. The new paradigm of
“HPC + AI” on exascale computing leads towards an “Integrated Sim, Data,
Learn Stack.” There has been a long history of application code development for
compute-intensive applications in the areas of climate, materials, medical, high
energy, and urban sciences applications. In light of these needs, we will highlight
developments and discuss the necessity of a set of tools and methods particularly
relevant to deploying AI on HPC systems.

Realizing the paradigm of “HPC + AI” requires three major components:
(1) the HPC system and investments in scaling application-driven capabilities;
(2) the AI software achieving the potential performance; and (3) the “+”, inno-
vative algorithms and implementations/tools that combine the components of
compute- and data-driven applications seamlessly on exascale machines.

2 Deep Learning Software on Modern HPC Systems

There are countless deep learning frameworks in existence today: Tensor-
Flow [15], PyTorch [16], MxNet [17], and many others. Each framework has
its own advantages and each falls short in some areas. One advantage of each of
these frameworks is their strong corporate backings. Companies pour significant
amounts of money into making production-ready libraries, which support various
hardware. However, when using these frameworks in an HPC setting, this can
cause issues. Much of the research and advancements by the library designers are
production focused and target cloud environments. Some of these advancements
translate well onto HPC systems, such as the use of hardware accelerators and
mixed precision. However, many communication paradigms and implementations
differ dramatically between the two. For example, the parameter server method
in TensorFlow is more suited for heterogeneous cloud environments, although it
is more bandwidth efficient than allreduce; and the socket-based GLOO commu-
nication backend built into PyTorch cannot efficiently utilize high-performance
interconnects on HPC systems, although it is more flexible.

2.1 Towards a Deep Learning Framework for HPC

We evaluated a number of existing packages for their readiness to efficiently run
deep learning models and applications on large-scale HPC systems. As pointed
out previously, we found various limitations. Our vision of what is important and
needed in deep leaning AI packages for HPC is incorporated into the design of
the MagmaDNN open source framework [18,19] (see Fig. 1) with current release
MagmaDNN v1.2 [20], which we discuss briefly in what follows.

Firstly, MagmaDNN targets HPC systems, rather than cloud systems. It is
written in C++ and is open source (available at bitbucket.org/icl/magmadnn).

Many of the core components of MagmaDNN are the same as other frame-
works: operations are represented in a compute graph, data is passed around via

https://bitbucket.org/icl/magmadnn
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tensors, gradients are computed using backpropagation, etc. However, each of
these was designed with an HPC environment in mind.

Fig. 1. MagmaDNN software stack.

MagmaDNN is centered around
existing high-performance software pack-
ages, enabling easy integration into
existing environments and Exascale
Computing Project (ECP) software
products. First and foremost, Mag-
maDNN uses the Matrix Algebra
on GPU and Multicore Architectures
(MAGMA) [21] package for heteroge-
neous linear algebra, since deep learn-
ing is heavily dependent on linear alge-
bra routines. For strictly CPU compu-
tations, the package allows the use of any Basic Linear Algebra Subprograms
(BLAS)/LAPACK packages such as Intel MKL, OpenBLAS, ATLAS, etc.

To better operate with hardware accelerators, MagmaDNN uses CUDA pack-
ages to harness GPU acceleration. Custom CUDA kernels, along with CUDNN’s
routines for GPU-accelerated deep learning, allows the package to get maximal
performance on GPU-enabled systems.

For distributed computing, MagmaDNN relies on existing HPC tools such as
the Message Passing Interface (MPI) for its communication. Most systems have
an MPI distribution tuned to that hardware, while some even have custom dis-
tributions. Relying on MPI for inter-node communication allows the framework
to utilize existing optimized implementations while providing simpler integration
with existing scientific codes.

This integration of existing HPC frameworks allows MagmaDNN to compile
and link with the fastest libraries for particular hardware. Utilizing existing
optimized packages is a consistent design pattern within HPC libraries, and
MagmaDNN uses interfaces that are commonly installed on HPC clusters. In
terms of integrating with existing systems and scientific codes, this approach
offers the package a significant advantage over other frameworks and workflows.

Not only does MagmaDNN integrate with current HPC frameworks, it pro-
vides modularity in its design and linking so that users have flexibility in use.
Conforming to standard APIs allows linking with any choice of framework; any
BLAS/LAPACK/MPI choice implementations can be used. However, it is not
just libraries with which MagmaDNN is modular. By utilizing computation
graphs and extendable C++ classes, the package allows users to fully customize
their neural networks. For instance, to utilize a unique network interface for dis-
tributed training, one can define a custom node on the computation graph which
handles the transfer of data on that network component. This can be further
utilized to define any desired data movement or computational elements. By
providing modular components, MagmaDNN provides a structure onto which
domain scientists can easily implement desired custom functionality.
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Much of this customizability is fully supported through MagmaDNN’s inter-
faces. For instance, working with GPU and distributed memory is abstracted
away in the MemoryManager class. Thus, library users do not need to worry
about where memory is stored and how it is transferred. The package identifies
the memory type, and whenever a memory operation is used (e.g., copy, put,
get, etc.), and the MagmaDNN implementation handles the low-level specifics.
Likewise, communication operations between devices or nodes are abstracted
into the library as well. However, users can define their own operations, meaning
they can redefine those in existing code. This makes it easy, for example, to
try out different convolution algorithms and determine which one performs opti-
mally. Another common example is to determine which distribution strategy is
optimal for a specific machine. The same training code will run on any machine,
and only the communication code might need to be altered.

Looking towards next-generation hardware and exascale systems, Mag-
maDNN aims to incorporate more technology stacks such as AMD’s HIP (e.g.,
hipMAGMA is already available) and Intel’s OneAPI. Support for more tech-
nologies will allow researchers at various labs and institutions to focus on domain
research—and not on how to integrate their code with HPC stacks. We also
hope to provide streamlined and optimal support for model parallelism. As the
size of models grows, so does the necessary memory requirements on devices.
Soon many cutting-edge networks, which can provide state-of-the-art accuracy
in classification, will require model parallelism. Supporting fast, scalable model
parallelism on HPC systems is crucial to facilitating next-generation research,
and MagmaDNN is moving towards this goal.

2.2 Workflow Software for Modern HPC Systems

Another major component in the integration of AI and HPC is the availabil-
ity of workflow software: which is critical, for example, in launching, collect-
ing results from, and analyzing various simulations in hyperparameter tuning,
DL networks discoveries, etc. Exascale applications largely have their own set
of workflow procedures and tools to launch their simulations. Integrating tra-
ditional applications seamlessly with existing AI software—either TensorFlow,
PyTorch, or MagmaDNN—takes on a new level of challenges. Most workflow
frameworks available today focus on cloud deployment, yet a workflow frame-
work tailored to scale on HPC systems is critical to the success to “Automate
and Accelerate” the task of “Sim, Data, and Learn Stack”. SWIFT-T [22] is
a tool that offers the choice to run on large-scale HPC systems. At The Uni-
versity of Tennessee, Knoxville (UTK), we have developed a parallel workflow
framework called openDIEL that aims to give researchers and users of HPC
machines an efficient way to coordinate, organize, and interconnect many dis-
parate modules of computation in order to effectively utilize and allocate HPC
resources [23,24]. It provides users an adaptive avenue to run compute-intensive
and data science jobs concurrently, allowing specification of DNN architectures,
data processing, and hyperparameter tuning. Existing ML tools can be readily
used in openDIEL, allowing for easy experimentation with various models and
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approaches. Most importantly, openDIEL provides a platform to run existing
ECP applications in their own workflow procedures. When conducting multi-
discipline simulations, it is often required to use a large variety of software,
and serial or parallel codes, to answer a research question. Utilizing disparate
modules of computation requires the careful coordination of dependencies, com-
munication, and synchronization between them, and there is not always a clear
path. This problem is solved by openDIEL: it enables researchers to define com-
plex dependencies between modules and schedule communication between them.
OpenDIEL consists of three primary components: the workflow control file, the
communication library (COMMLIB), and the Executive, shown in Fig. 2. Work-
flow is defined by users via the control file, which consists of two parts, the
definition of functional modules and the interactions and sequence of execution
of modules. OpenDIEL provides two communication libraries, one for direct
point-to-point data transfer between two modules, and a store-and-move tuple
space library for collective and asynchronous data transfers. The Executive is a
lightweight manager designed to run and scale on heterogeneous HPC platforms.

Fig. 2. OpenDIEL structure. Fig. 3. Workflow in materials sciences.

OpenDIEL specifically focuses on unifying modules into a single executable
that uses MPI for communication. Climate and materials sciences simulations,
with typical workflow shown in Fig. 3, are two of the applications that are incor-
porating deep learning into their simulations.

3 Algorithmic Improvements for DNN AI in HPC

In this section, we select and highlight the development of two technologies that
we believe are critical for the scalability and efficient use of HPC systems. The
first (Sect. 3.1) addresses scalability of DL training, stressing the benefits and
need for asynchronous methods on today’s highly parallel and heterogeneous
systems, featuring powerful nodes and relatively slow interconnects. The second
(Sect. 3.2) addresses hardware changes motivated by DL—in particular powerful
hardware acceleration for low-precision arithmetic—and techniques for harness-
ing this in scientific HPC applications.
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3.1 Asynchronous Methods

In a multi-core or many-core shared-memory environment, the speed at which
the parameters can be updated by different threads may be a limiting factor for
stochastic gradient descent (SGD) performance. This is because threads must
lock the parameter vector while they are updating it, preventing other threads
from reading or updating the parameters, so that they must wait. Asynchronous
versions of SGD may relax the data dependencies and order of operations com-
pared to the classical SGD algorithm, allowing the algorithm to update parame-
ters more rapidly—but also making the asynchronous algorithm mathematically
different and non-deterministic in its execution [25].

In a distributed-memory environment, a common implementation option for
SGD is for each compute node to store a copy of the model parameters [26].
When each compute node has computed a gradient for its mini batch of data,
all the gradients must be summed and then shared among the compute nodes
so that they can update their copies of the model parameters. This leads to a
potential bottleneck in the global all-reduce computation at every step of SGD.
In addition, nodes that compute their gradients faster than others must wait
for the other nodes (sometimes called “stragglers”). This can be a very high
synchronization overhead that may be difficult to reduce by load balancing on
heterogeneous architectures. An asynchronous approach can address these high
overheads, as we demonstrate below.

Another common implementation option for distributed-memory computers
is the parameter server approach [27]. Here, one or more compute nodes are
dedicated to storing and updating the model parameters. The worker nodes
compute gradients for their partition of the data and send these gradients to
the parameter server. The parameter server then sends back the updated values
of the model parameters. The parameter server model can be used to run SGD
synchronously—with the same issues of stragglers slowing down the iteration for
all nodes—but it has the advantage that it can also be run asynchronously (i.e.,
the worker nodes do not have to send gradients at the same time). Workers,
however, may be working with different sets of values for the parameters at
any instant. This makes the computation asynchronous. In distributed memory
implementations, the gradients are typically updated by the parameter server
using atomic memory operations, which differs from the shared memory case.

Asynchronous parameter server implementations were proposed around 2012
or earlier, but it was Hogwild! [25], with inconsistent reads and writes of the
parameter vector in shared memory, that popularized the asynchronous app-
roach. In particular, Hogwild! showed that, at least in cases of convex prob-
lems and gradient sparsity, asynchrony with inconsistent reads and writes does
not have to harm convergence asymptotically. Hogwild! was extended in many
directions, such as HogBatch [28], designed for efficiently running on multi-core
CPU architectures, and Buckwild [29] which exploits low-precision arithmetic to
accelerate the training. Improvements on the analysis of Hogwild! showed that
convergence can be maintained for the non-convex and non-sparse case [30]. In
MagmaDNN, we designed a parallel asynchronous variant of SGD that is similar
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to a parameter server approach, but on multi-core CPU and GPU architec-
tures [31].

In practice, the accuracy of machine learning models can be dramatically
improved by increasing the number of model parameters as well as the sizes
of the training sets. As a result, the memory footprint needed for model train-
ing often exceeds the memory storage available on a single node. In such cases,
models must be trained on large-scale machines where the dataset, and possi-
bly the model as well, are distributed among the compute nodes. From a per-
formance perspective, it is crucial to efficiently parallelize the training in this
setup—and this means overcoming the communication costs. It has been shown
that when targeting large-scale platforms, asynchronous algorithms can outper-
form the synchronous ones as in the shared-memory case. In Google’s DistBelief
framework [27], for example, the Downpour SGD algorithm uses a centralized
parameter server for storing the model, and distributes the dataset to other par-
ticipating nodes. Asynchrony enables communications to overlap with computa-
tions, thus improving resource usage. In addition, the algorithm is particularly
well adapted to heterogeneous computing environments where resources may
have different processing and communication speeds.

In MagmaDNN, we take a different approach, exploiting remote memory
access (RMA) using MPI one-sided communication capabilities for implementing
asynchronous SGD in order to maximize the scalability of parallel training. This
approach has already been proven efficient in implementing several asynchronous
numerical algorithms such as the Jacobi [32] or optimized Schwarz [33] methods
for solving sparse systems of linear equations.

3.2 Reduced and Mixed Precision

Deep neural networks can be efficiently trained using low-precision floating-point
arithmetic, such as single (fp32) or lower precision, improving the training times
on modern hardware [34]. Popular floating-point formats include the 16-bit IEEE
half-precision format (fp16) and the 16-bit bfloat16 [35] format. With fewer bits
in the mantissa compared to fp16, the bfloat16 format offers less precision but
has the advantage of having the same range as fp32—thereby removing the risk
of overflow and underflow when converting from fp32 data.

Motivated by the success of low-precision arithmetic in machine learning
applications, many specialized hardware accelerators have been designed with
reduced- or mixed-precision arithmetic capabilities. For example, the NVIDIA
Tensor Cores introduced in the Volta GPU can issue 4×4 matrix multiplication
D = C + A ∗ B in one clock cycle, where the input matrices A and B are fp16,
whereas D and C can be either fp16 or fp32. The theoretical performance peak
on Volta GPU is 125 teraFLOP/s, which is 8 times the performance peak for
fp32; and, although the accuracy of tensor core operations is lower than fp32,
the ability to accumulate the result of matrix multiplication in fp32 rather than
fp16 yields a considerable gain with respect to accuracy over fp16 [36]. In [37],
authors use Tensor Cores for computing a reduced-precision LU factorization
of a dense linear system, initially generated in double precision (fp64), and use
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these factors as a preconditioner for a Krylov solver in order to retrieve an fp64
solution. By doing this, they manage to reduce the time to solution up to 4×
fp64 arithmetic for the factorization.

Tensor Cores can also be used in performing FFTs [38]. Note that a matrix
in fp32 can be well approximated as the scaled sum of two fp16 matrices

A32 ≈ a132 ∗ A116 + a232 ∗ A216 (1)

where a132 and a232 are in fp32. Scaling by a132(a232) ensures A116(A216) is
within the limited dynamic range of fp16. Conceptually, A116 roughly captures
the 3 most significant decimal digits, and A216 the next 3 lower significant dec-
imal digits. If A32 is already well scaled, then one can expect a132 = 1 and
a232 = 2−11 ∗ a132. Matrix multiplication of two fp32 matrices can be approx-
imated by 3 matrix multiplications of fp16 matrices on Tensor Cores, which
may give a theoretical speedup of 8/3× on Volta GPU. For another perspective,
Eq. (1) suggests the form of operations in DNN are theoretically able to well
approximate operations of fp32 using mixed-precision operations in fp16.

4 Applications

4.1 Materials Science and Microscopy

There are multiple opportunities to exploit machine learning techniques in
materials science. While many applications have concentrated on materials
discovery—as exemplified by the use of ML in conjunction with databases such
as The Materials Project [39], AFLOW [40], or OQMD [41]—a tightly coupled
integration of traditional simulation techniques has great promise for bridging
the accuracy and computational cost divide between first principles calcula-
tions and effective models. One promising combination for a tight coupling is for
first principles statistical mechanics of materials to calculate the temperature
dependence of materials. This requires the calculations of many possible atomic
configurations within these materials using a Monte Carlo approach, where the
probability of the individual states would be evaluated using an expensive den-
sity functional theory calculation [42]. Thus, we will utilize ML to construct
surrogate models as an intermediate step to link the first principles calculations
to the Monte Carlo simulation. Here, the calculation of ordering phase transi-
tions in alloys might serve as an example [43]. In a solid solution alloy, different
chemical species can occupy the sites of an underlying lattice structure (note
that the total number of states grows exponentially with the number of atoms
in the system). Each of these possible configurations has a different energy that
determines the probability of the system being found in this state at a given
temperature. To build a model for these interactions, density functional calcu-
lations for representative configurations O(1,000–10,000) will be performed to
train a surrogate model that can replace the expensive (in the order of multiple
node hours per data point) first principles calculation within the Monte Carlo
sampling of possible configurations. While this approach can be conducted in a
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linear workflow, DFT → ML → MC, we envision a tighter coupled workflow,
which augments the original training set with new points from important regions
of the phase space discovered during the MC simulation, and retrains the model
to improve the quantitative predictive power of this approach.

A long-standing inverse problem in atomic imaging is the loss of phase infor-
mation during measurement (a.k.a., the phase problem). Given the sparse data
collection of scanning transmission electron microscopic (STEM) images on dif-
ferent types of materials, a comprehensive database is needed for the community
to study the subject. State-of-the-art electron microscopes produce focused elec-
tron beams with atomic dimensions and capture of convergent beam electron
diffraction (CBED) patterns. In this dataset [44], we use newly developed elec-
tron scattering simulation codes to generate CBED patterns from over 60,000
materials (solid-state materials) from a material project database, representing
nearly every known crystal structure. A data sample from this data set is given
by a 3D array formed by stacking 3 CBED patterns simulated from the same
material at 3 distinct material projections (i.e., crystallographic orientations).
Associated with each data sample in the data set is a host of material attributes
or properties which are, in principle, retrievable via analysis of this CBED stack.
These consists of the crystal space group to which the material belongs, atomic
lattice constants and angles, and chemical composition, to name but a few. Of
note is the crystal space group attribute (or label).

This dataset could be augmented with experimental data in the future. The
generated dataset, based on simulations, will emphasize the scalability aspect of
the model with the use of very large images (∼10 GB per image).

4.2 Super-Resolution for HPC Simulations

Image compression is a very active field of study, with new methods being con-
stantly generated [45]. The need for improvements in image compression quality
is growing in the field of HPC simulations because of the exponential trend
in data generation. There exists an untapped potential in this situation due
to the nature of simulated data that is not currently exploited. Simulation
data from numerical systems of partial differential equations exist on a solu-
tion manifold [46]. Thus, the manifold hypothesis in machine learning—which
states that real-world, high-dimensional data lie on low-dimensional manifolds
embedded within the high-dimensional space—is concrete for simulation data.
We can therefore expect that identifying this map to the low-dimensional mani-
fold will provide ideal compression for HPC Simulations. In the next paragraph
we describe the basic setup that allows researchers to test in situ machine learn-
ing for climate simulations.

The shallow water equations on a sphere is a well-known model used in
climate science to simulate basic dynamics of the Earth’s atmosphere. There
exist many test case scenarios for this model [47–50], and in this paper we
use the challenging test known as the barotropic instability test [50], which
involves perturbing the atmospheric flow with a localized bump to the balanced
height field. We simulate the shallow water equations on the sphere by using
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a fourth-order Runge-Kutta method [51] for time-stepping and a discontinuous
Galerkin (DG) spatial discretization with a Legendre basis on a cubed-sphere
mesh [52,53].

The data structure for this simulation consists of a time series of images
for each of the six faces of the cube, which for analysis can be converted to a
single series lat-lon gridded images. Arguably, the most commonly used form
of lossy compression is the discrete cosine transform (DCT) method [54]. ECP
has two projects on the development of FFTs and related transformations, one
of which is heFFTe [55], already integrated in the ECP software stack, deliver-
ing high-performance (close to 90% of the theoretical roofline peak), and very
good weak and strong scaling on systems like Summit at ORNL. This common
compression method fills out the setup of the in situ machine learning super
resolution method. At each time step of the barotropic instability simulation, in
situ machine learning methods are exposed to both the compressed image data
and the original image. As the simulation progresses, only the compressed image
data is stored to disk, and the machine learning method adaptively learns cor-
rect super-resolution transformation of the compressed data. Final stored data
contain all compressed image data with the trained machine learning method.
It has been demonstrated in [56] that, using this setup, it is possible to train in
situ networks to reduce the error in lossy compression—obtaining multiple orders
of improvement. Going forward, it will be necessary to further improve in situ
compression and analysis in order to maximize discovery with HPC simulations.

5 Meeting Exascale

Exascale systems will appear in 2021. These machines incorporate accelerators
from NVIDIA, AMD, and Intel. Efforts in preparing the software stack for exas-
cale systems have been a major focus in the DOE ECP program [57]. We believe
a native DNN framework such as MagmaDNN will pave a unique path to meet
the challenges of exascale platforms. Assisted by the openDIEL parallel workflow
engine, which admits a diverse spectrum of applications as functional modules,
we will be able to exploit the full capabilities of exascale machines. In-situ data
augmentation will be incorporated with compute-intensive simulations, leading
to discovery in multi- and inter-disciplinary, systems-wide, real-time recommen-
dation systems. From instrumentation calibration, experimental and observable
results, theoretical simulations, to validation and analysis—exascale computing
will be brought to bear on health, transportation, environment, and social sci-
ences. For example, climate and weather recommendation systems will be able
to integrate models in storms prediction, rainfall, vegetation, farm growth, pol-
lution, power usage, traffic flow, etc. [58–62]. As inputs and outputs from many
sensor devices become ubiquitous, the importance of a scalable AI framework
and an extensible workflow tool will grow.

Challenges will rise from algorithmic approaches as HPC systems continue
to expand and evolve. Multiple-precision implementation will be unavoidable.
Setting the basis and preparing for product diversity from different vendors will
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be an important consideration of an AI framework, as well. One challenge in
performance is to reduce the impact of communication while maintaining good
convergence of the algorithm, such as SGD, in the DNN framework. In the
Horovod framework [26], for example, the solution is to distribute the train-
ing of neural network on large machines using an efficient gradient reduction
strategy referred to as ring-allreduce. Notably, in the 2018 Gordon-Bell award
winning paper [63], Horovod was used in the context of TensorFlow to train two
DNN models on large systems, including the Summit machine, to detect extreme
weather patterns from climate data. Similarly, Horovod was used in [64] to train a
large DNN model for tackling inverse problems in imaging. Algorithmic improve-
ments towards individual or combined synchronous, asynchronous, and pipeline
approaches are essential to improve resource usage as well as convergence.

There is a trend in increasingly larg model sizes (especially in NLP—the lat-
est model [65] has 17 Billion parameters), and a need in scientific applications
(e.g., geospatial imaging) to process larger-dimension inputs. Although there
exist exascale deep learning applications [63,66] on pre-exascale system such as
Summit thanks to the Tensor Core technology, those use cases push the limit
on large-batch training for data parallelism and are not generally applicable to
exascale learning challenges. Early efforts [9,67] on model parallelism have made
progress, but are not yet mature or generic. An AI framework that can efficiently
exploit various level of parallelisms (data parallel, model parallel, hyperparam-
eter search, etc.) will be in demand.

6 Conclusion

Exascale systems are an important investment in the US. With exascale, we
envision a stronger economy and improved quality of life. It will also lead to
important scientific discovery and resolution of complex issues related to national
security. Development in AI software and tools that scale well on these systems
is important, and even more critical for AI frameworks that also work well across
the existing spectrum of exascale applications. Although many challenges exist,
a primary roadblock is the lack of direct collaborative effort, and a software plat-
form that values performance as the foremost priority. In this paper, we present
a unique set of AI tools and algorithms, as well as efforts between collegiate
and ORNL researchers, demonstrating that there is a pathway to integrate and
deploy machine learning to those ends—with emphasis on two major applications
on exascale systems.
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Abstract. The GMRES method is used to solve sparse, non-symmetric
systems of linear equations arising from many scientific applications. The
solver performance within a single node is memory bound, due to the low
arithmetic intensity of its computational kernels. To reduce the amount
of data movement, and thus, to improve performance, we investigated
the effect of using a mix of single and double precision while retaining
double-precision accuracy. Previous efforts have explored reduced preci-
sion in the preconditioner, but the use of reduced precision in the solver
itself has received limited attention. We found that GMRES only needs
double precision in computing the residual and updating the approx-
imate solution to achieve double-precision accuracy, although it must
restart after each improvement of single-precision accuracy. This finding
holds for the tested orthogonalization schemes: Modified Gram-Schmidt
(MGS) and Classical Gram-Schmidt with Re-orthogonalization (CGSR).
Furthermore, our mixed-precision GMRES, when restarted at least once,
performed 19% and 24% faster on average than double-precision GMRES
for MGS and CGSR, respectively. Our implementation uses generic pro-
gramming techniques to ease the burden of coding implementations for
different data types. Our use of the Kokkos library allowed us to exploit
parallelism and optimize data management. Additionally, KokkosKernels
was used when producing performance results. In conclusion, using a mix
of single and double precision in GMRES can improve performance while
retaining double-precision accuracy.

Keywords: Krylov subspace methods · Mixed precision · Linear
algebra · Kokkos

1 Introduction

The GMRES method [22] is used for solving sparse, non-symmetric systems of
linear equations arising from many applications [21, p. 193]. It is an iterative,
Krylov subspace method that constructs an orthogonal basis by Arnoldi’s pro-
cedure [2] then finds the solution vector in that subspace such that the resulting
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residual is minimized. One important extension of GMRES is the introduction
of restarting, whereby, after some number of iterations, GMRES computes the
solution vector, then starts over with an empty Krylov subspace and the newly
computed solution vector as the new initial guess. This limits the number of
basis vectors required for the Krylov subspace thus reducing storage and the
computation needed to orthogonalize each new vector. On a single node system,
performance of GMRES is bound by the main memory bandwidth due to the
low arithmetic intensity of its computational kernels. We investigated the use
of a mix of single and double floating-point precision to reduce the amount of
data that needs to be moved across the cache hierarchy, and thus improve the
performance, while trying to retain the accuracy that may be achieved by a
double-precision implementation of GMRES. We utilized the iterative nature of
GMRES, particularly when restarted, to overcome the increased round-off errors
introduced by reducing precision for some computations.

The use of mixed precision in solving linear systems has long been estab-
lished in the form of iterative refinement for dense linear systems [24], which is
an effective tool for increasing performance [6]. However, research to improve
the performance of GMRES in this way has had limited scope. One similar work
implemented iterative refinement with single-precision Krylov solvers, including
GMRES, to compute the error corrections [1]. However, that work did not explore
the configuration of GMRES and tested only a limited set of matrices. Recent
work by Gratton et al. provides detailed theoretical results for mixed-precision
GMRES [12]; although, they focus on non-restarting GMRES and understand-
ing the requirements on precision for each inner-iteration to converge as if done
in uniform, high precision. Another approach is to use reduced precision only
for the preconditioner [10]. One interesting variant of reduced-precision precon-
ditioners is to use a single-precision GMRES to precondition a double-precision
GMRES [3].

In this paper, we focus on restarted GMRES with left preconditioning and
with one of two orthogonalization schemes: Modified Gram-Schmidt (MGS) or
Classical Gram-Schmidt with Reorthogonalization (CGSR), as shown in Algo-
rithm1. The algorithm contains the specifics of the GMRES formulation that we
used. MGS is the usual choice for orthogonalization in GMRES due to its lower
computational cost compared to other schemes [20]. CGSR is used less often in
practice but differs in interesting ways from MGS. First, it retains good orthog-
onality relative to round-off error [11], which raises the question of whether this
improved orthogonality can be used to circumvent some loss of precision. Sec-
ond, it can be implemented as matrix-vector multiplies, instead of a series of
dot-products used by MGS. Consequently, CGSR requires fewer global reduc-
tions and may be a better candidate when considering expanding the work to a
distributed memory setting. Restarting is used to limit the storage and compu-
tation requirements of the Krylov basis generated by GMRES [4,5].
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Algorithm 1. Restarted GMRES with left preconditioning [21]
1: A ∈ R

n×n, x0, b ∈ R
n, M−1 ≈ A−1

2: for k = 1, 2, . . . do
3: zk ← b − Axk � compute residual
4: If ‖zk‖2 is small enough, stop
5: rk ← M−1zk

6: β ← ‖rk‖2, s0 ← β, v1 ← rk/β, V1 ← [v1]
7: j ← 0
8: loop until the restart condition is met
9: j ← j + 1

10: w ← M−1Avj

11: w, h1,j , . . . , hj,j ← orthogonalize(w,Vj) � MGS or CGSR
12: hj+1,j ← ‖w‖2

13: vj+1 ← w/hj+1,j

14: Vj+1 ← [Vj, vj+1]
15: for i = 1, . . . , j − 1 do

16:

[
hi,j

hi+1,j

]
←

[
αi βi

−βi αi

]
×

[
hi,j

hi+1,j

]
� apply Givens rotation

17: end for

18:

[
αj

βj

]
← rotation matrix

([
hj,j

hj+1,j

])
� form j-th Givens rotation

19:

[
sj

sj+1

]
←

[
αj βj

−βj αj

]
×

[
sj

0

]

20:

[
hj,j

hj+1,j

]
←

[
αj βj

−βj αj

]
×

[
hj,j

hj+1,j

]

21: end loop
22: H ← {hi,�}1≤i,�≤j , s ← [s1, . . . sj ]

T

23: uk ← VjH
−1s � compute correction

24: xk+1 ← xk + uk � apply correction
25: end for

26: procedure MGS(w,Vj)
27: [v1, . . . , vj ] ← Vj

28: for i = 1, 2, . . . , j do
29: hi,j ← w · vi

30: w ← w − hi,jvi

31: end for
32: return w, h1,j , . . . , hj,j

33: end procedure

34: procedure CGSR(w,Vj)
35: h ← Vj

Tw
36: w ← w − Vjh
37: [h0,j , . . . , hj,j ]

T ← h
38: return w, h1,j , . . . , hj,j

39: end procedure
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2 Numerics of Mixed Precision GMRES

To use mixed precision for improving the performance of GMRES, it is important
to understand how the precision of different parts of the solver affects the final
achievable accuracy. First, for the system of linear equations Ax = b; A, b, and
x all must be stored in full precision because changes to these values change the
problem being solved and directly affect the backward and forward error bounds.
Next, note that restarted GMRES is equivalent to iterative refinement where
the error correction is computed by non-restarted GMRES. Hence, adding the
error correction to the current solution must be done in full precision to prevent
x from suffering round-off to reduced precision. Additionally, full precision is
critical for the computation of residual r = Ax−b because it is used to compute
the error correction and is computed by subtracting quantities of similar value.
Were the residual computed in reduced precision, the maximum error that could
be corrected is limited by the accuracy used for computing the residual vector [7].

Next, consider the effects of reducing precision in the computation of the
error correction. Note that for stationary iterative refinement algorithms, it has
long been known that reduced precision can be used in this way while still
achieving full accuracy [24], which, to some extent, can be carried over to the
non-stationary correction of GMRES. The converge property derives from the
fact that if each restart i = 1, . . . , k computes an update, ui, fulfilling ‖ri‖ =
‖ri−1 − Aui‖ ≤ δ‖ri−1‖ for some error reduction δ < 1, then after k steps we get
‖rk‖ ≤ δk‖r0‖ [1]. Thus, reducing the accuracy of the error-correction to single
precision does not limit the maximum achievable accuracy. Furthermore, under
certain restrictions on the round-off errors of the performed operations, non-
restarted GMRES behaves as if the arithmetic was done exactly [12]. Therefore,
when restarted frequently enough, we hypothesize that mixed-precision GMRES
should behave like the double-precision implementation.

3 Restart Strategies

Restart strategies are important to the convergence. In cases when limitations
of the memory use require a GMRES restart before the accuracy in working
precision is reached, the restart strategy needs no further consideration. How-
ever, if mixed-precision GMRES may reach the reduced precision’s accuracy
before the iteration limit, it is important to have a strategy to restart early. But
restarting too often will reduce the rate of convergence because improvement is
related to the Arnoldi process’s approximation of the eigenvalues of A, which
are discarded when GMRES restarts [23]. As a countermeasure, we propose four
possible approaches for robust convergence monitoring and restart initiation.

There are two points to note before discussing specific restart strategies. First,
the choice of orthogonalization scheme is important to consider, because some
Krylov basis vectors usually become linearly dependent when GMRES reaches
the working precision accuracy, e.g., MGS [20], while other methods remain
nearly orthogonal, e.g., CGSR [11]. Second, the norm of the Arnoldi residual,
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the residual for GMRES’s least-squares problem, approximates the norm of the
residual of the original preconditioned linear system of equations and is computed
every iteration when using Givens rotations to solve the least-squares problem
(sj+1 in Algorithm 1) [21, Proposition 6.9]. However, this approximation only
monitors the least-squares problem and is not guaranteed to be accurate after
reaching working precision [13]. The explanation is unknown, but it has been
noted that the Arnoldi residual typically decreases past the true residual if and
only if independent vectors continue to be added to the Krylov basis. Hence,
the choice of orthogonalization scheme must be considered when using restarts
based on the Arnoldi residual norm.

Our first restart strategy derives from the observation that the number of
iterations before the convergence stalls appears to be roughly constant after each
restart. See Sect. 4.1 for numerical examples. While this does not alleviate the
issue determining the appropriate point for the first restart, this can be used
for subsequent restarts either to trigger the restart directly or as a heuristic for
when to start monitoring other, possibly expensive, metrics.

The second restart strategy is to monitor the approximate preconditioned
residual norm until it drops below a given threshold, commonly related to the
value after the prior restart. The simplest threshold is a fixed, scalar value. Note
that if the approximated norm stops decreasing, such as for MGS, this criterion
will not be met until GMRES is restarted. Thus, the scalar thresholds must be
carefully chosen when using MGS. More advanced threshold selection may be
effective, but we have not explored any yet.

Inspired by the problematic case of the second strategy, the third strategy
is to detect when the Arnoldi residual norm stops improving. Obviously, this
approach is only valid if the norm stops decreasing when GMRES has stalled.
Additionally, GMRES can stagnate during normal operation, resulting in itera-
tions of little or no improvement, which may cause premature restarts.

The final strategy is to detect when the orthogonalized basis becomes linearly
dependent. This relates to the third strategy but uses a different approach. For
the basis matrix Vk computed in the kth inner iteration, let Sk = (I+Uk)−1Uk,
where Uk is the strictly upper part of VH

k Vk [18]. Then, the basis is linearly
dependent if and only if ‖Sk‖2 = 1. It has been conjectured that MGS-GMRES
converges to machine precision when the Krylov basis loses linear indepen-
dence [19,20]. This matrix can be computed incrementally, appending one col-
umn per inner iteration, requiring 2nk+2k2 FLOP per iteration. Estimating the
2-norm for a GMRES-iteration with i iterations of the power method requires
an additional i(2k2 + 3k) FLOP by utilizing the strictly upper structure of the
matrix.

4 Experimental Results

First, Sect. 4.1 shows accuracy and rate of convergence results to verify the results
in Sect. 2 and to better understand the strategies proposed in Sect. 3. Next,
Sect. 4.2 compares the performance of our mixed-precision approach and double-
precision GMRES. Based on the results in Sect. 2, we focused on computing
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the residual and updating x in double-precision and computing everything else
in single-precision. This choice of precisions has the advantage that it can be
implemented using uniform-precision kernels and only casting the residual to
single-precision and the error-correction back to double precision. Note that in
this approach, the matrix is stored twice, once in single-precision and once in
double-precision; this storage requirement may be able to be improved by storing
the high-order and low-order bytes of the double-precision matrix in separate
arrays [14].

Matrices were stored in Compressed Sparse Row format and preconditioned
with incomplete LU without fill in. So, the baseline, double-precision solver
requires 24nnz + 8nm + 28n + 8m2 + O(m) bytes while the mixed-precision
solver requires 24nnz + 4nm + 32n + 4m2 + O(m) where nnz is the number of
matrix nonzero elements, n is the number of matrix rows, and m is the maximum
number of inner iterations per restart. All of the tested matrices came from the
SuiteSparse collection [8] and entries of the solution vectors were independently
drawn from a uniform distribution between 0 and 1.

We used two implementations of GMRES: a configurable one for exploring
the effect various factors have on the rate of convergence, and an optimized one
for testing a limited set of factors for performance. Both implementations are
based on version 2.9.00 of the Kokkos performance portability library [9]. The
OpenMP backend was used for all tests. Furthermore, for performance results we
used the KokkosKernels library, with Intel’s MKL where supported, to ensure
that improvements are compared against a state-of-the-art baseline. The rate
of convergence tests were implemented using a set of custom, mixed-precision
kernels for ease of experimentation.

All experiments were run on a single node with two sockets, each containing
a ten-core Haswell processor, for a total of twenty-cores and 25 MiB of com-
bined Level 3 cache. Performance tests were run with Intel C++ Compiler ver-
sion 2018.1, Intel MKL version 2019.3.199, and Intel Parallel Studio Cluster Edi-
tion version 2019.3. The environment variables controlling OpenMP were set to:
OMP_NUM_THREADS=20, OMP_PROC_BIND=spread, and OMP_PROC_BIND=places.

4.1 Measurement of the Rate of Convergence

To verify the analysis of Sect. 2, we first demonstrate that each variable behaves
as predicted when stored in single-precision, while the rest of the solver compo-
nents remain in double-precision. Figure 1 shows the normwise backward error
after each inner iteration as if the solver had terminated, for GMRES solving a
linear system for the airfoil 2d matrix. This matrix has 14 214 rows, 259 688
nonzeros, and a condition of 1.8×106. In the figure, the “Refinement Variables”
include the matrix when used for the residual, the right-hand side, the solution,
and the vector used to compute the non-preconditioned residual; the “Correc-
tion Variables” include the matrix when used to compute the next Krylov vec-
tor, the non-preconditioned residual, the Krylov vector being orthogonalized, the
orthogonal basis, the upper triangular matrix from the orthogonalization pro-
cess, and the vectors to solve the least-squares problems with Givens rotations.
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Fig. 1. Rate of convergence results for the airfoil 2d matrix when restarting every
300 iterations for MGS (left) and CGSR (right) orthogonalization schemes

The convergence when storing the preconditioner in single-precision was visually
indistinguishable from the double-precision baseline and omitted from the figure
for the sake of clarity. Each solver was restarted after 300 iterations. All of the
solvers behaved very similarly until single-precision accuracy was reached, where
all of the solvers, except double-precision, stopped improving. After restarting,
the solvers with reduced precision inside the error correction started improving
again and eventually reached double-precision accuracy; however, the solvers
with reduced precision in computing the residual or applying the error correc-
tion were unable to improve past single-precision accuracy.

The convergence test was repeated with two mixed-precision solvers that use
reduced precision for multiple variables. The first used double precision only
for computing the residual and error correction, i.e., using single precision for
lines 4–23 of Algorithm 1. The second was more limited, using single precision
only to store A for computing the next Krylov vector, the preconditioner M−1,
and the Krylov basis Vj from Algorithm 1; these three variables make up most of
the data that can be stored in reduced precision. Figure 2 shows the normwise
backward error after each inner iteration for single, double, and mixed preci-
sions solving a linear system for the airfoil 2d matrix. After restarting, both
mixed-precision GMRES implementations were able to resume improvement and
achieve double-precision accuracy. This ability to converge while using reduced
precision occurred for all of the matrices tested, as can be seen in Sect. 4.2.
Note that while limiting the use of mixed precision can increase the amount
of improvement achieved before stalling, this improvement is limited and does
not reduce the importance of appropriately restarting. Additionally, the limited
mixed-precision implementation requires several mixed-precision kernels, while
the fully mixed-precision implementation can be implemented using uniform-
precision kernels by copying the residual to single-precision and copying the
error-correction back to double-precision.
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Fig. 2. Rate of convergence results for the airfoil 2d matrix when restarting every
300 iterations for MGS (left) and CGSR (right) orthogonalization schemes

Table 1. Number of iterations before the improvement stalls in mixed-precision MGS-
MRES

Matrix Iterations
per Restart

Iterations
for 1st Stall

Iterations for
2nd Stall

Iterations for
3rd Stall

airfoil 2d 300 137 141 142

big 500 360 352 360

cage11 20 7 7 8

Goodwin 040 1250 929 951 924

language 75 23 21 21

torso2 50 28 27 25

One interesting observation was that the number of iterations before improve-
ment stalled was approximately the same after each restart. Table 1 displays the
number of iterations before stalling after the first three restarts in the mixed-
precision MGS-GMRES. Stalling was defined here to be the Arnoldi residual
norm improving by less than a factor of 1.001 on the subsequent 5% of inner
iterations per restart. This behavior appears to hold for CGSR too but was
not quantified because stalled improvement cannot be detected in the Arnoldi
residual for CGSR.

Next, restart strategies based on the Arnoldi residual norm were tested.
First, Fig. 3 shows the convergence when restarted after a fixed improvement.
Note that for MGS, when the threshold is too ambitious, mixed-precision
GMRES will stall because of roundoff error before reaching the threshold,
at which point the approximated norm stops decreasing. However, the choice
of restart threshold becomes problematic when considering multiple matrices.
Figure 4 shows the same test applied to the big matrix, which has 13 209 rows,
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Fig. 3. Rate of convergence results for the airfoil 2d matrix when restarting mixed-
precision GMRES after a fixed improvement in the Arnoldi residual norm for MGS
(left) and CGSR (right) orthogonalization schemes, with vertical ticks to indicate when
restarts occurred

91 465 nonzeros, and an L2 norm of 4.4 × 107. Note that the successful threshold
with the most improvement per restart is two orders of magnitude less improve-
ment per restart than that of airfoil 2d. Next, Fig. 5 uses the first restart’s
iteration count as the iteration limit for the subsequent restarts when solving
the airfoil 2d system. Because only the choice of the first restart is important,
a more ambitious threshold was chosen than for Fig. 3. Note that, except for
when the first restart was not triggered, this two-staged approach generally per-
formed a bit better than the simple threshold. Figure 6 shows the mixed restart
strategy for the big matrix. Note how the same thresholds were used for the
big test as the airfoil 2d test but were still able to converge and outperform
the matrix-specific, scalar threshold. This two-part strategy appears to behave
more consistently than the simple threshold.

Finally, we tested restarts based on the loss of orthogonality in the basis.
Because CGSR retains a high degree of orthogonality, this strategy was only
tested with MGS-GMRES. Figure 7 shows the rate of convergence when restart-
ing based on the norm of the S matrix. The spectral norm was computed using
10 iterations of the power method. Additionally, the Frobenius norm was tested
as a cheaper alternative to the spectral norm, although it does not provide
the same theoretical guarantees. Interestingly, when using the spectral norm, a
norm of even 0.5 was not detected until improvement had stalled for a notice-
able period. Note that even the Frobenius norm, which is an upper bound on
the spectral norm, did not reach 1 until, visually, improvement had stalled for a
few dozen iterations. The cause of this deviation from the theoretical results [18]
is unknown.
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Fig. 4. Rate of convergence results for the big matrix when restarting mixed-precision
GMRES after a fixed improvement in the Arnoldi residual norm for MGS (left) and
CGSR (right) orthogonalization schemes, with vertical ticks to indicate when restarts
occurred

Fig. 5. Rate of convergence results for the airfoil 2d matrix when restarting mixed-
precision GMRES after a fixed improvement in the Arnoldi residual norm for the first
iteration and the same number of iterations thereafter for MGS (left) and CGSR right)
orthogonalization schemes, with vertical ticks to indicate when restarts occurred. The
rate of convergence using just a fixed improvement threshold of 10−5 is added for
comparison’s sake
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Fig. 6. Rate of convergence results for the big matrix when restarting mixed-precision
GMRES after a fixed improvement in the Arnoldi residual norm for the first iteration
and the same number of iterations thereafter for MGS (left) and CGSR (right) orthog-
onalization schemes, with vertical ticks to indicate when restarts occurred. The rate of
convergence using just a fixed improvement threshold of 10−5 is added for comparison’s
sake

Fig. 7. Rate of convergence results for the airfoil 2d matrix when restarting mixed-
precision GMRES based on the spectral norm (left) or Frobenius norm (right) of the
S matrix, for MGS orthogonalization, with vertical ticks to indicate when restarts
occurred

4.2 Performance

Finally, we looked at the effect of reduced precision on performance. Additionally,
in testing a variety of matrices, these tests provide further support for some of the
conclusions from Sect. 4.1. The runtimes include the time spent constructing the
preconditioner and making any copies of the matrix. In addition to comparing
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the performance of mixed- and double-precision GMRES, we tested the effect of
reducing the precision of just the ILU preconditioner.

We first tested the performance improvement when other constraints force
GMRES to restart more often than required by mixed precision. For each of the
tested systems, we computed the number of iterations for the double-precision
solver to reach a backward error of 10−10. Then, we measured the runtime
for each solver to reach a backward error of 10−10 when restarting after half
as many iterations. All but 3 of the systems took the same number of itera-
tions for MGS; two systems took fewer iterations for mixed precision (ecl32
and mc2depi), while one system took more iterations for mixed precision (dc1).
CGSR added one additional system that took more iterations for mixed precision
(big). Figure 8 shows the speedup of the mixed-precision implementation and
the single-precision ILU implementation relative to the baseline implementation
for each of the tested matrices. For the mixed-precision implementation, the geo-
metric mean of the speedup was 19% and 24% for MGS and CGSR, respectively.
For the single-precision ILU implementation, those means were both 2%.

The second set of performance tests show what happens when GMRES is not
forced to restart often enough for mixed precision. All of the matrices from Fig. 8

Fig. 8. Speedup of the median runtime out of five tests for mixed-precision versus
double-precision restarted in half the number of iterations needed for double-precision,
for MGS (top) and CGSR (bottom) orthogonalization schemes, with error bars indi-
cating the minimum and maximum speedups
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that were restarted after fewer than 50 iterations were tested again, except they
were restarted after 50 iterations. For mixed-precision GMRES, the first restart
could additionally be triggered by an improvement in the Arnoldi residual by a
factor of 10−6 and subsequent restarts were triggered by reaching the number of
inner-iterations that caused the first restart. To ensure the mixed-precision solver
was not given any undue advantage, the other two solvers’ performance was taken
as the best time from three restart strategies: (1) the same improvement-based
restart trigger as mixed-precision GMRES; (2) after 50 iterations, or (3) after
an improvement in the Arnoldi residual by a factor of 10−8. Figure 9 shows the
new performance results. For the mixed-precision implementation, the geometric
mean of the speedup was −4% and 0% for MGS and CGSR, respectively. For the
single-precision ILU implementation, those means were 2% and 1% respectively.
The matrices for which the mixed-precision implementation performed worse
were exactly the matrices that did not require restarting when solved by the
double-precision implementation.

Fig. 9. Speedup of the median runtime out of five tests for mixed-precision versus
double-precision restarted after 50 iterations or an improvement in the Arnoldi resid-
ual, for MGS (top) and CGSR (bottom) orthogonalization schemes, with error bars
indicating the minimum and maximum speedups
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5 Conclusion

As a widely used method for solving sparse, non-symmetric systems of lin-
ear equations, it is important to explore ways to improve the performance of
GMRES. Towards this end, we experimented with the use of mixed-precision
techniques to reduce the amount of data moved across the cache hierarchy to
improve performance. By viewing GMRES as a variant of iterative refinement,
we found that GMRES was still able to achieve the accuracy of a double-precision
solver while using our proposed techniques of mixed-precision and restart initi-
ation. Furthermore, we found that the algorithm, with our proposed modifica-
tions, delivers improved performance when the baseline implementation already
requires restarting for all but one problem, even compared to storing the precon-
ditioner in single precision. However, our approach reduced performance when
the baseline did not require restarting, at least for problems that require less
than 50 inner iterations.

There are a few directions in which this work can be further extended. The
first direction is to expand the implementation to a variety of systems that are
different from a single CPU-only node. For example, GPU accelerators provide
a significantly higher performance benefit than CPUs but involve a different
trade-off between computational units, memory hierarchy, and kernel launch
overheads. Thus, it would be beneficial to explore the use of mixed precision in
GMRES on these systems. Also important are the distributed memory, multi-
node systems that are used to solve problems too large to be computed efficiently
on a single node. In these solvers, the movement of data across the memory hier-
archy becomes less important because of the additional cost of moving data
between nodes. A related direction is to explore the use of mixed-precision tech-
niques to improve variants of GMRES. One particularly important class of vari-
ants is communication-avoiding and pipelined renditions for distributed systems,
which use alternative formulations to reduce the amount of inter-node commu-
nication. The last major direction is to explore alternative techniques to reduce
data movement. This can take many forms, including alternative floating-point
representations, such as half-precision, quantization, or Posits [15]; alternative
data organization, such as splitting the high- and low-order bytes of double-
precision [14]; or applying data compression, such as SZ [16] or ZFP [17].
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13. Greenbaum, A., Rozložńık, M., Strakoš, Z.: Numerical behaviour of the modi-
fied Gram-Schmidt GMRES implementation. Bit. Numer. Math. 37(3), 706–719
(1997). https://doi.org/10.1007/BF02510248
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Abstract. As we approach the Exascale era, computer architectures are
evolving ever-greater vector and matrix acceleration units—NVIDIA’s
Ampere Tensor Cores, Intel’s AMX, and Arm’s SVE vector instruc-
tion set developments are just three recent examples [1,2,10]. To exploit
these, it is expected that optimised math libraries such as those for dense
and sparse linear algebra, will play an increasing role in achieving opti-
mal performance. It is therefore useful to understand which of these
functions dominate an application’s runtime, and in particular how this
changes with increasing scale. This work aims to provide a contempo-
rary dataset regarding how much dense linear algebra (BLAS) is used
in HPC codes at scale. We have analysed several science codes widely
used on the UK HPC service, ARCHER (https://www.archer.ac.uk),
including CASTEP, CP2K, QuantumESPRESSO, and Nektar++. To
capture demands from the AI community, we have additionally traced the
training stage of the Convolutional Neural Network (CNN), AlexNet [7].
HPLinpack is also included as a reference, as it exhibits a well-understood
BLAS usage pattern. Results from across all the codes show that, unlike
HPLinpack, BLAS usage is never more than 25% of the total runtime,
even when running at a modest scale (32 nodes of the Arm-based super-
computer, Isambard). This presents limited speedup opportunity when
considering Amdahl’s law, and suggests that application developers may
need to adjust their algorithms to spend more time in optimised BLAS
libraries to capitalise on new architectures and accelerators.

1 Introduction

High-performance computing processors are becoming progressively more
advanced, with many featuring dedicated execution units or technologies that
allow them to accelerate critical workloads. A driving force behind this innova-
tion is the rise in popularity of deep learning, which requires efficient methods
for computing vector and matrix operations in order to train and infer from,
neural networks. Recent examples of these architectures are the TensorCores
found in NVIDIA’s Ampere GPUs and the enhanced vector operations in Arm
SVE [1,10]. We expect this accelerator trend to continue with more processors
adopting specialised linear alebra units in forthcoming years [6].

Exploiting this hardware often requires writing custom code or intrinsics on
an individual application basis, and while this could result in high-performance
c© Springer Nature Switzerland AG 2020
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code, this is more labour-intensive and reduces an application’s portability. One
solution to this, is to encapsulate the complexity within optimized math libraries
- such as BLAS and LAPACK allowing applications to freely swap in a machine
specific library on different systems. This also allows existing AI and HPC appli-
cations to benefit from accelerated linear algebra operations, without code mod-
ifications.

To understand how these libraries are affecting application performance, we
must collect data on how real science codes are using BLAS today. Furthermore,
if this data is to be relevant in the rapidly approaching Exascale era, we must
also understand how this usage changes with increasing scale. Given this dataset,
we’ll be able to understand if our leading applications can take advantage of these
architectures, and in the future, design even more effective hardware accelerators.

In this study, we have chosen a representative set of popular BLAS-using
applications from the UK’s national supercomputing service, ARCHER, to inves-
tigate how much linear algebra is used at different node counts. The reason for
selecting codes from ARCHER was to ensure that any results are directly rele-
vant to UK HPC users. We have gathered this dataset by intercepting dynamic
calls to BLAS, allowing us to capture both the time spent in each function, and
the parameters of each call. We have provided a detailed analysis of this data
and have extracted key features that will be useful for designing hardware accel-
erators, and ultimately, improving HPC application performance in the future.

2 Related Work

Recent years have seen a plethora of modern architectures adapted to accelerat-
ing deep learning workloads including Google’s TPU, Graphcore’s IPU, Intel’s
Nervana, and NVIDIA’s Tensor Cores, to name but a few. The heart of these
technologies, is their ability to rapidly compute tensor operations with maximal
efficiency, for example, NVIDIA’s Tensor Cores perform a 4 × 4 matrix-multiply
operation in a single cycle. These tensor operations form a critical part of both
the inference and training stages of neural networks [4].

Since the release of these technologies, the HPC community has shown
increasing interest in exploiting dedicated-function sillicon to accelerate the lin-
ear algebra widespread in HPC applications. Work has already been completed
that shows it’s possible to achieve a performance benefit in HPC applications,
even with the lower precision units found in modern hardware [9]. Interestingly,
even this caveat is likely to be now obsolete with the recent announcement of
NVIDIA’s double precision Ampere Tensor Cores [1].

Given that this new market for accelerators seems to be a perfect fit for
HPC applications, one would inuitively believe that there exists a substantial
dataset on how much our popular codes are actually using linear algebra. Yet
as of June 2020, there is no existing dataset that shows the prevalence of BLAS
in scientific codes, even though a large body of literature exists on several other
usage aspects of HPC applications, including MPI communication, memory, and
I/O [8,12,13].
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3 Methodology

To uncover how much BLAS is used across the HPC application spectrum, we
examined a usage report from the ARCHER system and decided on a repre-
sentative set of codes that are commonly run by its users. Table 1 shows the
proportion of time that ARCHER spends running each of our chosen applica-
tions; the aggregate total of these equates to over 15% of ARCHER’s total annual
usage.

Table 1. ARCHER usage report, from April 1, 2019 to March 31, 2020.

Application Code type ARCHER usage

CASTEP Quantum materials modelling 4.7%

CP2K Quantum materials modelling 5.8%

LAMMPS Classical materials modelling 2.9%

Nektar++ Computational fluid dynamics 0.6%

QuantumESPRESSO Quantum materials modelling 2.1%

Clearly, this table shows a significant bias towards material modelling codes,
but as mentioned by Turner [11], this is to be expected given that both the
EPSRC and NERC are heavy users of ARCHER. These material modelling codes
have been found to exhibit widely varying BLAS profiles, and thus were included
to allow comparison. VASP is a notable exception from this list, and wasn’t
included because of its licensing model and similarities to CASTEP - the same
reasons for its omittance from the ARCHER2 procurement benchmarks [11].

As HPC and AI applications are clearly converging, we have increased the
scope of this study by tracing the Convolutional Neural Network (CNN), AlexNet
[7], to capture demands from the AI community. Future architectures will want
to improve performance for both HPC and AI, and therefore it is interesting
to compare each field’s linear algebra patterns, in an effort to find architectural
features that will accomodate both.

BLAS usage is, of course, highly variable across a set of applications, and is
dependent on the benchmark case being run and its corresponding code path.
In light of this, we endeavored to select benchmarks according to the following
criteria:

– The benchmark can be completed in no more than a few hours on a single
node setup, allowing applications to be traced within a reasonable time frame.
This allows results to be reproduced more easily, either to check our results,
or for future comparison.

– The benchmark is representative of what the community is currently running,
allowing users to immediately benefit from this study.

– The benchmark scales well, and represents what users will want to run in the
next few years, on the largest supercomputers. The benchmarks of today may
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be very different to the benchmarks that are run on future accelerators, and
this should be taken into account, where possible.

3.1 Nektar++

Nektar++1 is a parallel spectral framework used for solving partial differential
equations, and is the only computational fluid dynamics code in this study. To
find a benchmark that adhered to the criteria we set out, we consulted the devel-
opers of Nektar++, who provided a 2D shock wave boundary layer benchmark.
This benchmark used the compressible flow solver in Nektar++ and consists of
2400 elements, with 4 * 4 modes per element.

Nektar++ 5.0 was built using: the Arm 19.2 compiler, the Arm 19.2 perfor-
mance libraries, Boost 1.70, Scotch 6.0.8, and HDF5.

3.2 QuantumESPRESSO

QuantumESPRESSO2, is a periodic electronic structure code which is in the
top 15 most heavily used codes on ARCHER. Before selecting benchmarks for
this application, we tested several of the QuantumESPRESSO benchmarks that
are maintained in the official benchmark repository. Of this set, we then chose
the AUSURF112 and GRIR433 benchmarks, which featured radically different
proportions of BLAS usage.

QuantumESPRESSO 6.1 was built using with both the Arm 19.2 compiler,
the Arm 19.2 performance libraries, and ScaLAPACK 2.0.2. The code was run
with the recommended -npools x flag, where x is the number of k-points used
in the benchmark case. Note, for node counts of 1 and 2 for the AUSURF112
benchmark, and 1, 2 and 4 for the GRIR443 benchmark, this -npools x value
was reduced to allow the program to fit into Isambard’s 256 GB of RAM per
node.

3.3 CASTEP

CASTEP3 is a commonly run Fortran code on UK HPC systems, where it is used
to calculate material properties including energetics and atomic-level structure
using density functional theory (DFT). We used a modified version of the ‘al3x3’
benchmark, which simulates a 270 atom sapphire surface, with a vacuum gap.
We modified this benchmark after consulting the developers of CASTEP, who
advised that the pseudopotentials in ‘al3×3’ were both less accurate and com-
putationally less demanding than modern ones. This modified benchmark can
be replicated by updating the ‘al3×3’ benchmark with cut-off energy, 700 eV,
and letting CASTEP generate new pseudopotential files.

CASTEP 19.1 was built using: the Cray 8.6 compiler, the Cray 18.12 Libsci
library, and Cray FFTW 3.3.8.
1 https://www.nektar.info.
2 https://www.quantum-espresso.org.
3 http://www.castep.org.

https://www.nektar.info
https://www.quantum-espresso.org
http://www.castep.org
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3.4 CP2K

CP2K4 is another Fortran DFT-based software package that can be used to
run different atomistic simulations. For this application we used the ‘H20–1024’
benchmark, which is a version of the well known ‘H20–64’ benchmark that sim-
ulates a larger number of water particles.

CP2K 5.1 was built using: the GCC 8.3 compiler, the Arm 19.2 performance
libraries, ScaLAPACK 2.0.2, and Cray FFTW 3.3.8.

3.5 LAMMPS

LAMMPS5 is a massively parallel molecular dynamics simulation program that
mainly focuses on modelling materials. The code is used in a large range of
different research fields, and has a correspondingly large number of additional
packages that it can be run with. While there is extensive use of linear algebra in
these packages, most of them use custom in-house methods for computation and
only a select few link to BLAS libraries. The point on using in-house methods and
not BLAS library calls is important, as it shows a weakness in our methodology,
as our tracing tool can’t detect these methods. Of the niche few packages that
use BLAS, most use insignificant amounts, or don’t scale beyond 1 MPI process.
Given these reasons, and the lack of recognised benchmarks in the LAMMPS
community, we have included this information here to prevent repeated work,
but LAMMPS won’t be analyzed further in our results section.

3.6 AlexNet

AlexNet is a Convolutional Neural Network (CNN) developed by Krizhevsky [7].
The network competed in the ImageNet Large Scale Visual Recognition Chal-
lenge, and achieved an error rate of 15.3%, which was well above the competition
at the time. Unlike the other codes in this study, it is not commonly used on the
ARCHER system, but we have included it to capture the linear algebra usage
of an AI workload, to see how this differs from HPC applications. In this study,
we use a subset of 20 out of the 200 classes in the ImageNet dataset, and train
the network for 10 epochs, with a batch size of 32.

AlexNet was run with: TensorFlow 2.2.0, Bazel 2.0.0, MKL-DNN 0.21.3,
SciPy 1.4.1, NumPy 1.17, OpenCV 4.4.0, and ArmPL 20.0.

3.7 Library Tracing Tools

We obtained a BLAS trace for each application by adapting the Arm library
tracing tool, perf-libs-tools6. The tool works by using LD PRELOAD to inter-
cept dynamic calls to BLAS, LAPACK and FFT libraries, and then recording

4 https://www.cp2k.org.
5 https://lammps.sandia.gov.
6 https://github.com/ARM-software/perf-libs-tools.

https://www.cp2k.org
https://lammps.sandia.gov
https://github.com/ARM-software/perf-libs-tools


72 H. Waugh and S. McIntosh-Smith

parameter data and computation time at the end of each intercepted function.
Given that the tracer works by intercepting dynamic BLAS calls, it is critical to
note that inline linear algebra code cannot be detected by the tracer, as refer-
enced in Subsect. 3.5. The modified version of the tracer7 was adapted to work
with BLAS libraries other than the Arm performance library, and features a
low-memory version suitable for use with applications that make a large number
of unique BLAS calls, including CASTEP.

4 Results

These results were collected by running each application on the Arm-based super-
computer, Isambard. Each node in this Cray XC50 machine features an Arm-
based, dual-socket 32-core Marvell ThunderX2 processor, with 256 GB of DDR4
DRAM.

For all tested HPC applications, we present the percentage of runtime spent
computing BLAS, at scales of 1 node up to 32 nodes inclusively. Each code
was strong-scaled, with the exception of HPLinpack, which is weakly scaled.
Note that QuantumESPRESSO uses different parameters for low node counts
due to memory constraints - more detail is included on this in Subsect. 3.2. The
proportion of time that each application spends in BLAS, at each scale, can be
seen in Fig. 1.

Clearly, there is a negative correlation between the percentage of time spent
in BLAS, and the number of nodes. Even at a modest node count of 32 (2048
cores), the maximum amount of time a code spent in BLAS was just 22%. This
implies that, even with unlimited BLAS acceleration, each application would
only go a maximum of 1.28× faster at this scale [5].

4.1 Interpreting Matrix Distribution Figures Using HPLinpack

HPLinpack is the only application that maintains its proportion of BLAS as we
increase the number of nodes. Although this is expected, and arguably trivial,
we’ve included it as a well-known example to demonstrate confidence in our
methodology, and to explain how to interpret Figs. 2, 3, 4, 5 and 6. These figures
show the A and B matrix size distributions for the dominant general matric
multiply (GEMM) call in each application. This note on which GEMM operation an
application uses is important, as it will directly affect the amount of elements in
a vector instruction or the type of matrix multiplication unit that is required.
These GEMM level-3 BLAS calls are responsible for 80–100% of all BLAS usage
in our tested applications, which is to be expected, given that these level-3 algo-
rithms are of O(n3) time complexity. Figure 2 shows the matrix size distribution
for the DGEMM calls in HPLinpack’s LU decomposition. In these GEMM figures, each
data point represents the time that a code spends computing GEMM functions at
a given matrix size, of which, the time spent is proportional to the area of each

7 https://github.com/UoB-HPC/perf-libs-tools.

https://github.com/UoB-HPC/perf-libs-tools
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Fig. 1. The proportion of runtime spent computing BLAS operations, and how this
changes as we increase the number of nodes.

data point. Darker, denser points on these graphs represent a large number of
calls of similar, but not exactly the same, size. This explains the intuitive truth
that an equal amount of time is spent computing A and B matrices, and thus
the total area on each subplot should also be equal.

4.2 Nektar++

The proportion of time that Nektar++ spends in BLAS, shown in Fig. 1, is the
most consistent code as we scale the number of nodes. Using 1 node, 38% of
Nektar++’s runtime is in BLAS, which gradually reduces to 20.5% as we scale
up to 32 nodes. As given in Table 2, the majority, 82%, of this BLAS usage is
made up of double precision matrix multiply (DGEMM) calls, with only 17% being
double precision matrix-vector multiply (DGEMV) calls. The distribution of matrix
sizes that DGEMM is called with is shown in Fig. 3.

This figure shows that Nektar++ spends a large amount of its time in BLAS
computing DGEMM calls on matrix sizes of less than ‘100 by 100’, with a significant
number of these being smaller than ‘10 by 10’. Given these small matrices, its
remarkable how high the proportion of time spent in BLAS is when compared
with other codes, and highlights the sheer number of calls that Nektar++ is mak-
ing. Interestingly, Nektar++ only calls DGEMM with a handful of unique matrix
sizes compared to other applications in the study. These observations suggest
that Nektar++ may be a strong candidate for using batched BLAS operations,
as described by Dongarra [3]. These allow lots of smaller GEMM operations to be
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Fig. 2. The distribution of A and B matrix sizes in HPLinpack DGEMM calls, with the
time spent computing them given by the area of each data point.

bundled together to make more efficient use of the hardware, comparable to that
of a single much larger GEMM operation.

4.3 QuantumESPRESSO

Figure 1 shows the proportion of time that both the AUSURF112 and GRIR443
benchmarks spend in BLAS. These benchmarks demonstrate that applications
can exhibit widely varying BLAS usage, which is highly dependent on the case
being run. The proportion of time in BLAS at a scale of 32 nodes is a clear
example of this, with AUSURF112 at 3.2% and GRIR443 at 21.9%—the lowest
and highest fractions found in this study. Both of these benchmarks spend over
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Fig. 3. The distribution of A and B matrix sizes in Nektar++ DGEMM calls, and the
time spent computing them. These DGEMM calls operate on a large number of very small
matrices.
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90% of their time in BLAS computing double precision complex matrix multiply
(ZGEMM) calls; the GRIR443 distribution of ZGEMM matrix sizes is shown in Fig. 4.

This figure shows that the GRIR443 benchmark spends the majority of its
time computing roughly square ZGEMM matrices of size ‘1000 by 1000’ up to
‘10,000 by 10,000’. These matrices are the largest found in the study, and explain
the highest proportion of BLAS at 32 nodes in the study.

4.4 CASTEP

The results in Fig. 1 show that the majority of CASTEP’s runtime is spent in
BLAS for runs using up to 4 nodes, but beyond this, BLAS usage falls to 12.2%
when using 32 nodes. Of this usage, 90% of the time CASTEP spends in BLAS
operations is taken up by level-3 BLAS, and specifically, ZGEMM calls or complex
double-precision matrix multiplications. There is a minority of DGEMM operations
used in the 2 k-point ‘al3×3’ benchmark, although interestingly, when using
CASTEP with special cases that have 1 k-point, the majority of CASTEP’s
BLAS usage becomes DGEMM operations. The distribution of matrix sizes that
ZGEMM is called with is shown in Fig. 5.

This figure show that CASTEP spends a significant amount of time com-
puting matrix multiplications with M and N dimensions of 100–1000, but with
larger K dimensions of 1,000–10,000. This implies that CASTEP typically mul-
tiplies a square A matrix with a rectangular B matrix.

4.5 CP2K

Figure 1 shows that 45% of CP2K’s run time is spent in BLAS routines when
using 1–4 nodes, with this proportion reducing to 20% as we scale to 32 nodes.
This is significantly different from the other periodic electronic structure code,
CASTEP, which spends more time in BLAS at low node counts, and less time
in higher node counts. Another key difference is shown in Table 2, which notes
that 99% of CP2K’s BLAS funtions are DGEMM or double-precision matrix mul-
tiplications. The distribution of matrix sizes that DGEMM is called with is shown
in Fig. 6.

Considering the A matrix size distribution, we can see a distinct bimodal
distribution with peaks around (25, 25) and (1000, 1000). This implies that
CP2K spends a substantial proportion of time computing matrix multiplications
with either very small or moderately sized A matrices. When considering the ‘K
by N’ B matrix, it can be seen that the N dimension is nearly always less than
or equal to 100, and the K dimension varies between 10–1000.
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Fig. 4. The distribution of A and B matrix sizes in QuantumESPRESSO GRIR443
ZGEMM calls, and the time spent computing them. These ZGEMM calls operate on very
large square matrices.
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Fig. 5. The distribution of A and B matrix sizes in CASTEP ZGEMM calls, and the time
spent computing them. The majority of usage is spent computing roughly square A
matrices, with rectangular B matrices.

4.6 AlexNet

The BLAS profile we recorded from tracing the training stage of AlexNet shows
that 0.1% of the runtime is spent computing BLAS, with all of the routines
being DGEMM operations that multiply a ‘3 by 3’ A matrix by a ‘3 by 3’ B matrix.
This is an unexpected result and leads us to believe that a significant amount of
TensorFlow’s linear algebra is either inlined or contained within custom BLAS
implementations, beyond the reach of the tracing tool—see Subsect. 3.7.
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Fig. 6. The distribution of A and B matrix sizes in CP2K DGEMM calls, and the time
spent computing them. A significant proportion of runtime is spent computing A matri-
ces that are around ‘25 by 25’ and ‘1000 by 1000’ in size.

Table 2. BLAS Characteristics Summary

Application Benchmark case BLAS usage - 32 node Constituent BLAS functions

CASTEP al3×3–700 eV 12.2% 90% ZGEMM, 6% ZHERK

CP2K H20–1024 19.8% 99% DGEMM

Nektar++ 2DShockWave 20.5% 82% DGEMM, 17% DGEMV

QuantumESPRESSO GRIR443 21.9% 98% ZGEMM

QuantumESPRESSO AUSURF112 3.2% 92% ZGEMM. 5% ZGEMV

5 Conclusion

In this study, we have observed a diverse mix of new architectures being rapidly
developed to accelerate linear algebra in codes—in direct response to the rise
in popularity of deep learning. We have examined a range of the codes from
the UK national HPC service, ARCHER, and provided the first dataset on how
much each application is using BLAS. We have analysed this BLAS usage, and
identified GEMM routines as being responsible for the majority of BLAS computa-
tion. Examining GEMM usage further, we have given a matrix size distribution for
each application, which will be useful for chip manufacturers looking to design
optimal vector widths and the size of matrix multiplication units.

The method demonstrated in this study is not infallible, and we note two
areas in our work that could be improved. The first is highlighted by our trace
profiles of the QuantumESPRESSO benchmarks, which show widely varying
amounts of BLAS. Clearly, benchmark choice can have a great impact on the
amount of BLAS used, although this can be mitigated by choosing a repre-
sentative benchmark. The second limitation of this study is more subtle, and
is a consequence of our chosen tracing tool. This tracer works by intercepting
dynamic BLAS library calls, and therefore any inline linear algebra or custom
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BLAS routines can’t be detected by our tool, as was the case when tracing
AlexNet. We plan to refine our method of tracing for future work to take more
of this linear algebra into account.

Overall, the results in this paper indicate that a significant proportion of HPC
application runtime is spent computing BLAS when using a low number of nodes.
Therefore, for scientists that don’t need higher fidelity simulations, and who want
to increase their throughput and reduce ‘time to science’, BLAS acceleration
technologies are an attractive proposition. Moreover, these technologies will also
increase performance today, with no changes to the code base required.

Scaling beyond 4 and up to 32 nodes, we still see BLAS as a definite fraction
of the runtime, but this is greatly diminished compared to before, with none
of the tested applications spending more than 25% of their runtime comput-
ing BLAS. This implies that, even with infinite BLAS speedup, no application
would perform more than 1.33× faster. Given this result, one could assume that
BLAS acclerator architectures are not significant in the forthcoming Exascale
era, however, this is only a reflection on the current state of applications. In fact,
these results illustrate an urgent need for adapting our application algorithms
to make use of more BLAS, as we develop processors with more powerful and
efficient linear algebra units.
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Abstract. Advances in computing infrastructure and instrumentation
have accelerated scientific discovery in addition to exploding the data vol-
umes. Unfortunately, the unavailability of equally advanced data manage-
ment infrastructure has led to ad hoc practices that diminish scientific pro-
ductivity and exacerbate the reproducibility crisis. We discuss a system-
wide solution that supports management needs at every stage of the data
lifecycle. At the center of this system is DataFed - a general purpose, sci-
entific data management system that addresses these challenges by feder-
ating data storage across facilities with central metadata and provenance
management - providing simple and uniform data discovery, access, and
collaboration capabilities. At the edge is a DataGateway that captures raw
data and context from experiments (even when performed on off-network
instruments) into DataFed. DataFed can be integrated into analytics plat-
forms to easily, correctly, and reliably work with datasets to improve repro-
ducibility of such workloads. We believe that this system can significantly
alleviate the burden of data management and improve compliance with
the Findable Accessible Interoperable, Reusable (FAIR) data principles,
thereby improving scientific productivity and rigor.

1 Introduction

Scientific research has been facing a reproducibility crisis [5,6,14]. One important
and surmountable factor is the typical absence of sufficient information (data,
metadata, provenance, workflow, software, etc.) associated with reports on sci-
entific discoveries that are critically important for reproducing the research [20].
Software containers and modern workflow softwares have proven to be reason-
ably successful in facilitating reproducibility with respect to the software stack
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[7,8,19,22]. However, readily available, user-friendly, and comprehensive tools
to access, search, share, organize, curate, publish, and otherwise manage scien-
tific data remain a long-standing need. This is also an urgent need since the
time spent on data management is projected to rise exponentially [11,17] due to
the explosion in scientific data [9,15]. Despite the dearth of data management
tools, increased globalization of scientific research, and the need to publicly share
data [21], facilities and research groups are at best grappling with the data chal-
lenges individually/independently or are typically resorting to ad-hoc methods.
These ad-hoc practices not only result in loss/poor quality of data and metadata
but also a substantial decrease in scientific productivity.

Ingest
Experiment 

Context & Data 
Capture

Management
Data Storage, 
Organization,

& Sharing

Analysis
Data Processing 

& Analysis

Creation
Experiment 

Configuration
 & Execution

Publication
Results & Data

Publication

Results from Analytics 
Context Capture

Fig. 1. Data lifecycle for reproducibility

Figure 1 illustrates the lifecycle of scientific data. Traditionally, sub-optimal
and ad-hoc data management practices occur throughout the lifecycle. Research
investigations start with the design, configuration, and execution of experiments
which produce scientific data. Most experiments (simulations/observations, etc.)
produce metadata that capture the context of the experiment in addition to the
raw data itself. At the ingest step - since the context regarding experiments is
often not comprehensively captured at the source (instrument, simulation mod-
ule, etc.), researchers manually capture the remaining context (e.g., sample ID,
etc.) in physical or electronic lab notebooks in a non-standardized, ad-hoc, and
error-prone manner. However, these metadata are rarely collated and therefore
do not support the data when necessary.

Moving on to the management step - when data is generated off-network
(e.g., some scientific instruments), scientists resort to collecting and transport-
ing measurement data using portable storage drives. The collected data and
metadata are often stored in traditional file-systems which only provide primi-
tive data sharing, search, and management capabilities. Since data in file-systems
are discoverable largely based on file names and paths, most researchers resort
to embedding key metadata into the file paths. Since each user stores and rep-
resents data and metadata in unique ways, such information collected by users
is often usable only by the user who collected the data thereby exacerbating
the reproducibility crisis. Desired data are still exchanged using emails, shared
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folders, and portable storage drives, each having their own set of limitations.
Challenges in sharing and reusing data are further exacerbated by the diversity
in the representation (schema and ontology for data and metadata), storage (file
formats and data repositories), availability (proprietary/open), dimensionality
(1D signals to multidimensional hypercubes) and semantics of scientific data
and metadata within and across scientific domains.

At the analysis step - results from data processing and analyses are stored
back into the file-systems, often without capturing the complete context of the
analyses, thereby inheriting many of the aforementioned problems. Finally, at
the publish step - scientific discoveries are reported/published often without the
supporting data. Even when data directly used in the publication are published,
data deemed redundant or unimportant for the primary investigation are left
untracked, unused, and unpublished despite their latent value [24] leading to the
so-called “dark data” [13] problem. When data are published, they are often
not discoverable since the scientific metadata associated with the data are not
exposed to search engines. As a result of such practices and challenges, it is
exceedingly challenging to comply with the Findable Accessible, Interoperable,
and Reusable (FAIR) data principles, which were proposed to facilitate open,
collaborative, and reproducible scientific research [27].

Improving reproducibility in science through better data practices therefore
necessitates the use of comprehensive scientific data management tools that can
effectively support scientific data throughout the data lifecycle from ingest to
publishing. Revisiting Fig. 1; using data management tools, researchers will be
able to ingest - comprehensively capture context/metadata along with raw data
from experiments, manage - intuitively and easily share, search for, organize,
transport data, analyze - capture secondary data products from analyses and
visualization along with context and provenance between products, and publish
data for reuse in the broader scientific community. Importantly, other researchers
should be able to easily find such published data and use the rich metadata and
provenance associated with the data to reproduce the original results. Though
there are several tools [3] that address specific data management challenges,
there are very few flexible, system-wide solutions that support every stage of the
data lifecycle for all scientific domains [1,4,12,18,23,25]. Limitations of existing
solutions will be discussed later in appropriate sections.

2 Systemic Approach to Reproducibility

To facilitate reproducibility in science, we are proposing a systemic solution
that will emphasize and directly support the critical data lifecycle phases of
ingest, management, and analysis, shown in Fig. 1, that are often overlooked or
poorly executed. It is within these data lifecycle phases that full data prove-
nance and rich domain-specific metadata can be captured and utilized to enhance
the scientific context needed to ultimately reproduce experimental or computa-
tional results. The proposed solution includes components, services, and com-
munication protocols that would be deployed across facilities in order to create
a common, FAIR-principled “data federation” - enabling simple, uniform, and
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Fig. 2. Proposed data system architecture

performant data access, management, analysis, and collaboration from anywhere
within, or across, this federation.

Figure 2 shows a conceptual view of this system where experimental and/or
observation facilities are connected to compute and/or analytics resources via
the primary component of the system: a distributed scientific data management
system (SDMS) called “DataFed” [26]. The key concepts of DataFed are dis-
tributed raw data storage, centralized metadata and provenance management,
and performant data transfer. DataFed primarily addresses the needs of the
management component of the data lifecycle phase; however, two additional
components, the “Data Gateway” and “JupyterHub” (as an example), address
the needs of the ingest and analytics phases of the data lifecycle respectively.

In addition to metadata and provenance management, the DataFed central,
or “core”, services, shown in Fig. 2, provide system-wide command and control
for raw data access-control and transfer. This is implemented using DataFed-
specific application programming interfaces (APIs) and protocols that are used
by other system components, such as the Data Gateway, integrated instrument
data acquisition (DAQ) systems, or even user compute jobs at high performance
computing (HPC) facilities, in order to ingest, locate, access, or share data, on
behalf of scientific users. Upon data ingestion, raw data is transferred to DataFed
“Data Repositories”, which are managed data stores, and, unlike local file sys-
tems, these data repositories are connected to the DataFed data network and
managed by DataFed core services. DataFed data repositories are not required to
be collocated with instruments or facilities, and can be centrally located and/or
shared by multiple facilities. An expanded view of a DataFed data repository is
shown at the bottom left of Fig. 2.

Experimental and/or observational facilities can be directly integrated with
DataFed, such as through modification or extension of existing data acqui-
sition or instrument control systems (top-left of Fig. 2). For network-isolated
instruments (top-right of Fig. 2), the “Data Gateway” appliance is available to
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both provide network buffering as well as easy to use data ingest and context
capture services. The Data Gateway can also be deployed virtually, as shown
in the “Compute/Analytics Facility” in Fig. 2, to provide general data ingest
support for users without access to an DataFed integrated facility.

Data analytics platforms deployed within Compute/Analytics facilities could
provide data analytics and visualization capabilities for one or more facilities.
We use Jupyter Notebooks [16] and JupyterHub [10] (multi-user) as an example
since they capture context regarding analytics for reproducibility. Appropriate
DataFed commands could be incorporated within analytics scripts to down-
load/stage data, capture context regarding the analytics, and push results data
back to DataFed for management later. By comprehensively capturing the soft-
ware stack in containers, analytics related context within Jupyter Notebooks,
data ingest operations via Data Gateway, and repeatable data operations using
DataFed, analysis workloads can be more easily reproduced.

While the described system is intended to address specific aspects of the
reproducibility crisis, it is vital that it also be easy for users to learn, adopt, and
use. Moreover, use of this system should improve research productivity, not hin-
der it. The components of this system have been designed with this philosophy
in mind - resulting in features and capabilities that directly reduce complex-
ity, improve productivity, and help ensure correctness of data handling when
compared to ad-hoc solutions. The individual components of this system are
described in detail in Sects. 3, 4 and 5 below. For general use cases as well as
examples of how this system would be useful for modeling, simulations, experi-
ments, and data analytics, refer to Sect. 6.

2.1 Development and Deployment

The full system solution described above is currently in the design and prototyp-
ing stage of development. However, two of the components of the system, the Data
Gateway and DataFed, have been partially implemented and deployed at ORNL
within the Center for Nanophase Materials Science (CNMS) and the Compute and
Data Environment for Science (CADES) facilities, respectively. DataFed is cur-
rently deployed as an alpha-release production service. One instance of the Data
Gateway has been deployed for scanning probe microscopes at CNMS as a proof-
of-concept and is currently capable of authenticating users at the instruments, cap-
turing metadata and transmitting data and metadata to a remote data repository.
A dedicated CNMS DataFed repository has been deployed within CADES, and a
data repository within the OLCF is planned. In the future, integration with the
SNS, and HFIR is anticipated, and JupyterHub services and a Virtual Data Gate-
way would be deployed within CADES. Additional funding is being actively pur-
sued in order to complete development and deployment at ORNL.

3 Data Ingest

The need for DataFed to serve the broader scientific community in a domain-
agnostic manner necessitates a tool that can ingest data and metadata while
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accommodating the high heterogeneity in data generation sources and data types
across scientific domains, especially from off-network data producers. Some solu-
tions do indeed exist that purport to solve some of the above data infrastructure
challenges [4,18,23]. However, these solutions are typically monolithic in nature
and ingest data into a built-in SDMS with limited configurability/features with
regards to data storage, data analytics/post-processing, and metadata capture
and indexing. Furthermore, these capabilities are implemented using technolo-
gies that are not scalable to accommodate the needs of highly heterogeneous
and large datasets. Importantly, these solutions result in disjoint silos of data
that do not and cannot exchange data elsewhere in the world. Therefore, we
are developing a “Data Gateway” to facilitate and streamline data ingest and
metadata capture into DataFed.

Fig. 3. Overview of the data gateway

Often, instrumentation software are incompatible with the latest security
patches or operating system updates. Consequently, such instrumentation com-
puters are often kept off the network to avoid security vulnerabilities. Yet, there
is a need to capture data and metadata from such instruments. For such instru-
ments, we would deploy a Data Gateway “appliance”, as shown in Fig. 3, that
would consist of both a server (physical hardware) and a software stack (deployed
within the server) that provides local data ingest services as well as configurable
internet routing to expose remote web services such as the DataFed web portal
and an analytics service such as JupyterHub. The Data Gateway consists of a
suite of web-based data services pre-installed on a server, with local storage, that
would be deployed within a given experiment facility and networked with the
facility’s individual scientific instrument control workstations. This configuration
allows the scientific user at each instrument to access the Data Gateway ser-
vices while maintaining general network isolation of the instruments (which may
be required for IT security purposes). Due to this network isolation, scientists
operating scientific instruments cannot directly access data stored in DataFed;
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therefore, the Data Gateway acts as a data “buffer” between the instrument
control workstation and DataFed, providing temporary data storage for both
data uploads and downloads. While data upload is essential for the data ingest
processes, data downloads may be needed in order to analyze data using propri-
etary software that may only be available on an instrument control workstation
due to licensing or operating system constraints.

The Data Gateway’s data services are configurable for both specific instru-
ments and specific experiments and include data upload/download, metadata
capture and extraction, and optional data preprocessing. The Data Gateway
provides a graphical web-based “companion application” that can be used from
an instrument control workstation while conducting an experiment or measure-
ment - allowing users to easily upload resulting data files and capture associ-
ated metadata. Metadata can be captured using configurable input forms or
by extracting metadata automatically from data files, or using a combination
of both approaches. The API supporting the “companion application” could
be exposed to allow instruments to push data and metadata from instruments
without the need for humans in the loop.

Users may also opt to utilize available data preprocessing methods, such as
file format translations or data reduction, prior to the transfer of the data into
DataFed. Such data preprocessing code would be encapsulated in containers to
simplify isolation, development and maintenance of the core Data Gateway soft-
ware stack from the data preprocessing code. Additionally, the use of containers
would provide freedom to for domain-scientists to write pre-processing codes
in the language and using the software stack they are comfortable with. These
metadata extraction and data preprocessing codes would be part of a centralized
and vetted library of codes that could be shared across multiple physical and
“virtual” Data Gateways. We are in the process of defining standards and an
API that would be used for the containers to interact with the Data Gateway.
Subsequently, we will start to populate and solicit such codes or references to
containers in a public repository at https://github.com/ORNL/MD Extractors.
Additionally, we will provide documentation on the best practices for develop-
ing such data preprocessing codes that will lower the barrier for researchers to
develop and provide their own codes. Domain scientists would need to develop
these codes as they integrate new kinds of simulation codes/instruments with
the Data Gateway and update codes only when they need to modify the data
processing or account for changes in the simulation code/instrumentation.

For fully networked facilities, full automation of data and metadata capture
can be achieved through DataFed’s application programming interfaces (APIs)
through a one-time integration into existing instrument control systems, data
acquisition systems, data pipelines, job scripts, and/or workflows. Data pre-
processing and metadata extraction codes from the library mentioned above
could be reused optionally. Once this integration effort is complete, users need
only authenticate prior to running an experiment or utilizing a resource, and
data and metadata will be captured and ingested into DataFed with no fur-
ther user interaction. Optionally, users may use DataFed to install local security

https://github.com/ORNL/MD_Extractors
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credentials to avoid the need for subsequent authentication. For large user facil-
ities, direct DataFed integration represents the ideal configuration as all rele-
vant scientific context (instrument configuration, experiment/simulation param-
eters, run information, etc.) will be automatically captured and raw data will be
ingested into DataFed with no additional burden on end-users.

Users outside such facilities that utilize the Data Gateway appliance or direct
DataFed integration, such as those running simulations or analytics within a
compute facility, can also utilize DataFed through one of two options: 1) users
may use the DataFed command-line-interface (CLI) to add DataFed commands
to their job scripts, or 2) a Data Gateway can be installed as a “virtual” service
within a facility to provide generalized, web-based data ingest services to all
users of the facility. Though, much of the software stack developed for the Data
Gateway appliance can be readily deployed for “virtual” Data Gateways, users
would need to develop metadata extraction and data-preprocessing codes specific
to their needs if they are not available in the shared repository of vetted codes.

4 Data Management

A SDMS represents a type of laboratory informatics software for capturing, cata-
loging, and sharing heterogeneous scientific data. It is common to find products
that combine SDMS features with other processing capabilities such as data
distribution, workflow management, or even instrument interfacing and control.
While there are many available SDMS or SDMS-like products available for use
[12,25], these systems are based on older, non-scalable user authentication tech-
nologies and tend to be more applicable to the fixed data distribution needs of
large-scale, domain-specific research efforts. Thus, there is still a need for scalable
and user-friendly data management tools that work across scientific domains and
profoundly empower scientists.

An SDMS suitable for use in open, cross-facility, and domain-agnostic scien-
tific research contexts must be able to scale with the volumes and varieties of data
being generated from research conducted at large scale experiment, compute, and
analytics facilities. It must be able to function across organizational boundaries
and efficiently cope with thousands of users, including both resident staff sci-
entists and visiting researchers. It must be able to function within, and across,
many different operating environments with varying security policies, ranging
from individual scientific instruments to leadership class high-performance com-
puting systems. And, importantly, it must offer simple and uniform interfaces to
minimize the need for training and encourage adoption by non-technical users.

Based on these requirements and a lack of an appropriate existing solution,
the decision was made to design and develop a new SDMS that would better
match the needs of the scientific research community within DOE laboratories.
This system is called “DataFed” with the name being derived from the approach
of federating data management across existing organizations and facilities to
provide flexibility, scalability, and cross-facility data access.
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4.1 DataFed Overview

DataFed is a federated scientific data management system that differs from exist-
ing SDMS products by offering a scalable, cross-facility data management solu-
tion with decentralized raw data storage and high performance, secure, and reli-
able data movement. DataFed is able to scale-out through its ability to incorpo-
rate additional organizations/facilities, users, and shared storage resources with-
out the typical burdens and bottlenecks associated with centrally administered
systems that rely on virtual organizations (VO) and/or manually deployed user
security credentials. Individual users, facilities, or entire organizations may join
or leave the DataFed federation at any time without requiring any administra-
tive actions on the part of other federation members. DataFed uses the scalable
GridFTP protocol (via Globus [2,3]) for all raw data transfers and supports
integration with high performance storage systems and networks. This ensures
optimal and reliable handling of very large data files (up to petabyte scale).

DataFed provides a centralized orchestration service that integrates and man-
ages remote raw data storage resources (aka “data repositories”) physically
housed within member facilities; however, while DataFed manages the raw data
files in these repositories, individual facilities own the storage hardware and
retain full administrative control over data policies and user/project allocations.
DataFed data repositories may be configured to use most types of data storage
systems including low-cost commodity disk-backed systems, fast SSD systems,
and high-reliability archival storage systems. Facilities may opt to provide more
data robustness by implementing periodic back-ups of these storage systems, or
by utilizing data replication to prevent data loss from hardware failures. Ideally,
facilities would integrate the management of DataFed allocations (assignment,
capacity, durability, accounting, etc.) into existing user and project management
systems and funding sources. The storage properties and policies of a facility’s
repositories are visible to users via DataFed, and users can easily migrate data
between different facilities, or repositories within a facility, based on availabil-
ity, locality, reliability, or performance requirements. Because DataFed utilizes
Globus federated identity technology for user accounts and fine-grained access
control, individual facilities no longer need to manually manage user security
credentials or maintain complex and/or constantly changing cross-organizational
access control lists.

When data is initially stored in a data repository, DataFed captures and
retains any associated metadata and provenance (along with tracking informa-
tion) in a centralized database. The use of a centralized metadata database does
not significantly impact system scalability due to the relatively small storage
requirements of metadata (on the order of 10’s of kilobytes) when compared to
raw data files (ranging from megabytes to terabytes, or more). Access to raw
data stored in a DataFed data repository is controlled (managed) by DataFed -
not the local storage system. By preventing users or processes from directly
accessing or modifying raw files within a repository, DataFed ensures that
associated tracking information and metadata remains synchronized with raw
data and eliminates potential ambiguity regarding which file should be accessed



92 D. Stansberry et al.

(a common problem when using unmanaged file sharing technologies for large
collections of data). The central DataFed database would be deployed on a reli-
able and fast storage system (i.e. RAID) and would be regularly backed-up.

The raw data stored in a data repository is private and secure by default -
meaning only the owner, or creator, of the data can access it, and data transfers
are encrypted. Data owners may choose to share their data with other DataFed
users or groups regardless of organizational affiliation through DataFed’s own
fine-grained access control system. Specific permissions such as read, write, cre-
ate, or even administrative control can be granted; Moreover, by using DataFed’s
hierarchical data organization features, these permissions can be easily granted
and managed for large collections of data. DataFed also provides a data project
feature to facilitate teams of collaborators working with semi-private or collec-
tively owned data. Due to the need for substantial compliance testing for higher-
level data security policies, DataFed currently only supports open research.

DataFed creates a central database data record for each raw data file stored
in a data repository in order to track and control access to the raw data and to
store and index associated metadata and provenance relationships. A variety of
built-in metadata fields are supported for data records (such as title, description,
and keywords), but, importantly, domain-specific structured metadata may also
be stored with a data record. Retaining and indexing all of this information
within a central database enables powerful data organization, discovery, and
dissemination capabilities that will be discussed later in this paper. DataFed does
not support incremental versioning of metadata or raw data, but provenance-
based, full-record versioning is supported by adding “deprecation” dependencies
between new and old versions of a record.

4.2 FAIR Compliance

DataFed was designed to be as FAIR compliant as reasonably possible within the
context of both pre-publication “working” data and “static” data that is published
from DataFed. DataFed specifically addresses FAIR principles as follows:

– Findable - DataFed assigns persistent system-unique identifiers to every data
record. DataFed also captures and indexes rich metadata that can be used to
query for matching records.

– Accessible - DataFed identifiers can be used to locate and access associated
data, and DataFed enforces authentication and authorization for all access.
The protocol for access to data within DataFed is open and easily imple-
mentable (implementations are provided for Python and C++).

– Interoperable - DataFed utilizes a simple JSON representation for metadata
with optional schema support; however, external metadata references are not
directly supported.

– Reusable - DataFed represents domain-specific metadata and provenance in
a uniform manner in addition to facilitating keywords and tags which would
allow users to discover and reuse data shared by others for similar or other
novel applications.
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4.3 Data Organization, Sharing, and Dissemination

While FAIR compliance is an important aspect of DataFed, DataFed includes a
number of features that extend beyond the scope of FAIR to more actively assist
researchers in complex collaborative contexts. For example, DataFed can signifi-
cantly assist with the challenges of managing and utilizing large volumes of data
within the complex environments associated with high performance computing,
cross-facility workflows, and data processing pipelines. In these situations, being
able to locate a single data record is less important than being able to stage spe-
cific collections or subsets of data for processing within a compute environment.
In addition, the ability for an upstream researcher (data producer) to auto-
matically and precisely coordinate with and/or notify downstream collaborators
(data consumers) is vital.

DataFed provides named data “collections” which provide a basic form of
hierarchical data organization that resembles directories in a file system; how-
ever, unlike directories, data is only linked within collections rather than being
“owned” by the collection. This allows data to be organized in multiple parallel
collection hierarchies, if desired, without duplication of data. Both individual
data records and collections can be shared by setting fine-grained permissions
for specific users or groups of users. Collections can be assigned a topic and
made public, which results in such collections being internally “published” as
a DataFed catalog where they can be discovered and accessed by all DataFed
users.

As an alternative to collections, DataFed also provides dynamic views of data
records based on saved queries. The built-in data search capability allows users
to search private, shared, and public data records by identifier, alias, keyword,
words and phrases, tags, and arbitrary metadata expressions. For example, a
view could be created to show only data records that were most recently cre-
ated or updated by a collaborator, or records that include specific values or
ranges in domain-specific metadata, such as sample type, temperature range, or
experiment category.

As an aide in maintaining data awareness, users with appropriate access may
opt to subscribe to specific data records and collections such that they will receive
notifications whenever certain events occur, such as data or metadata updates,
record creation, deprecation, and deletion, or changes in provenance informa-
tion. If issues arise concerning specific shared data records or collections, users
may choose to create linked annotations that will notify and convey additional
information, warnings, and/or questions to all concerned parties (i.e. data pro-
ducers and downstream data consumers via subscription or provenance links).
These annotations function similarly to typical document review systems and
are preferred over external methods (such as email) as they remain linked and
visible on the subject record or collection within DataFed.
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5 Data Analytics

Jupyter Notebooks have emerged as a popular framework for data processing
and analytics workloads [16]. These notebooks not only contain the code to
process information but can also contain rich markdown to provide contextual
information such as equations, and provide a rich narrative using static or inter-
active visualizations in-line with code snippets. Users can add a preamble to
the notebook to check and install necessary software or encapsulate the note-
book, input data (when data is small) and necessary software stack in software
containers [19] to facilitate reproducibility of data analytics workloads. A deploy-
ment of JupyterHub [10] would facilitate reproducible data analytics for several
researchers. DataFed can further improve the reproducibility of analytics work-
loads through its ability to address specific datasets, stage multiple datasets
(potentially located in multiple repositories) at specific file-systems, and capture
the context (analytics algorithm parameters) and results (data) of data ana-
lytics runs systematically. Users could also share unpublished/private scripts or
notebooks via DataFed.

6 Scientific Applications

The many features of the proposed system substantially alleviate data manage-
ment burdens and improve scientific productivity. Many of the benefits of the
system are shared for all modes of scientific discovery and are discussed below.
Common use-cases and benefits specific to each modes of scientific discovery are
discussed in dedicated subsections below.

DataFed facilitates capture of metadata and provenance, thereby obviating
the need for scientists to embed selected metadata into file paths. Using DataFed,
users could perform complex searches for data based on the rich domain-specific
metadata over multiple repositories that span multiple facilities or organizations.
By standardizing metadata representation, DataFed enables users to find and
reuse data owned by themselves, others, or available publicly and also facilitates
multi-disciplinary and multi-modal scientific (experiments, observations, simu-
lation, analytics) collaborations. However, note that neither the Data Gateway,
nor DataFed mandates the use of specific file formats for the raw data or schemas
for metadata.

DataFed’s use of Globus allows users to transport data quickly and seam-
lessly between repositories or facilities without concerning themselves about nav-
igating complex security restrictions or the kind of file-system supporting these
repositories. DataFed obviates the use portable storage drives. The barriers to
publish data (downloading/uploading data, entering metadata again, repeating
the process for multiple datasets) is also substantially mitigated since DataFed
can integrate with data publishing services and repositories. Users would only
need to switch a setting on the individual record or a large collection from private
to published. Similarly, users can also accrue citations by publishing otherwise
“dark data”.
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6.1 Modelling and Simulations

Researchers performing modelling or simulations could incorporate DataFed
instructions within their scripts for reliable data staging and capture that:

1. Download input file from DataFed
2. Run modeling/simulation codes
3. Capture metadata
4. Put resulting data and metadata into DataFed repository

In step 1, researchers can use DataFed to unambiguously identify input files
or other required files and reliably stage such files at the remote file-systems
even if the data records are in repositories located in other institutions. In step
3, researchers can extract metadata from their input scripts and/or the results
of the simulations by leveraging the repository of vetted codes for data pre-
processing. Once the raw data (from the simulation) and metadata are available,
researchers can push this information to a DataFed repository in step 4. Via
1–2 simple commands using the DataFed client, the researchers can create a
DataFed record, add the metadata, and push the raw data. Optionally, links to
related data records such as input files could be added to capture the complete
provenance of the experiment. The same methodology would also accommodate
common scenarios where several simulations are run as a function of one or more
parameters. Once DataFed commands are integrated into the simulation script,
the same/similar commands could be reused for a given type of simulation code.

Through consistent, correct, and careful handling of data, DataFed facil-
itates traceability and reproducibility of experiments. Once information from
simulation runs is captured in DataFed, researchers can search for, share, orga-
nize, and move their data. Such consistent collection of data with rich metadata
can enable scientists to build large collections of data that would be necessary
to train surrogate models using machine learning (ML) or deep learning (DL).
These surrogate models could replace expensive kernels of simulations, thereby
accelerating the exploration of large and multidimensional parameter spaces.

6.2 Observations and Experiments

Unlike modeling and simulation workflows, the data handling processes for obser-
vational sciences are handled almost entirely by the Data Gateway. Researchers
working on off-network scientific instruments could use the “companion web
application” on the Data Gateway appliance to seamlessly capture the raw
data and metadata from experiments and add them to a DataFed repository
as experiments are being conducted. Scientific instruments used predominantly
for conducting automated and long-running (days, weeks, or months) experi-
ments/observations could instead be configured to automatically and periodi-
cally push data and metadata to DataFed repositories via the Data Gateway
without the need for a human to manually upload data while at the instrument.
This would allow researchers to analyze the data stream collecting in a DataFed
repository while working away from the instrument. Similarly, future iterations
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of the Data Gateway could potentially facilitate instrument control. The bur-
den for extracting and standardizing metadata when pushing data into DataFed
would also be diminished if researchers use the vetted set of codes for automated
data-preprocessing at the Data Gateway.

Researchers could search, organize, share, and manage data with their collab-
orators via DataFed and use a data analytics platform like JupyterHub to analyze
data in DataFed repositories even while operating the off-network instruments
using the Data Gateway. Clearly, the proposed system dramatically simplifies
the processes of capturing metadata, standardizing data formats, and collecting
data in readily accessible and well connected data repositories. In addition, the
data management capabilities offered by the proposed system are substantially
superior to file explorers on personal computers.

6.3 Data Analytics

As discussed above, the proposed system is a conducive platform for researchers
from multiple disciplines and working on disparate modes of scientific discovery
to collaboratively assemble large collections of richly annotated datasets that
are required for ML/DL applications. Similar to modeling and simulation work-
flows, data analytics applications could benefit immensely by incorporating a
few DataFed commands into the scripts or Jupyter notebooks that:

1. Identify data records or collections of interest
2. Get datasets from DataFed repositories
3. Run data analytics application
4. Capture metadata context from analytics
5. Put resulting data and metadata into DataFed repository
6. Establish provenance

In step 1, researchers could optionally use the DataFed’s search capability to
identify collections and/or datasets of interest for the data analytics applica-
tion. In step 2, researchers could stage large collections of datasets, that may
potentially be spread over multiple institutions in multiple repositories, with a
single ‘get’ command. After performing data analytics, researchers could capture
metadata (analytics software version, algorithm identifier, algorithmic parame-
ters, etc.) that are typically available within the data analytics script or note-
book in step 4. In step 5, results such a weights for ML/DL models, model
inference results, plots, etc. could all be captured as new data records as neces-
sary and enriched with the collected metadata. Finally, the relationship between
the results and the source dataset or collection could be captured via the prove-
nance capability in DataFed in step 6. Thus, DataFed can facilitate traceability
and reproducibility even in data analytics workflows through comprehensive and
unambiguous data handling and management.

7 Conclusions

We presented a system architecture aimed at significantly alleviating the burden
of data management, improving scientific productivity, facilitating compliance
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with FAIR data principles, lowering the barrier to cross-facility and collabora-
tive research, and improving scientific rigor in general. Each component of the
system is specifically designed to support the needs of each state of the data life-
cycle past data acquisition. DataFed - a general purpose and domain-agnostic
SDMS forms the backbone of this system and it is supported by the Data Gate-
way to capture raw data and context from experiments into DataFed. Optional
components include a data analytics platform, such as a JupyterHub server, or
other computational workflow software that can work with DataFed, software
containers, and the Data Gateway to facilitate reproducible analytics workloads.

The Data Gateway’s modular design allows it to be readily deployed for
different scientific domains to comprehensively, swiftly, and seamlessly capture
data and metadata, especially from off-network instruments, in a consistent,
automated and repeatable manner. DataFed provides users with a logical view
of data that abstracts routine nuances of data storage and facilitates capture
and enrichment of scientific metadata and provenance associated with the raw
data. DataFed users benefit from powerful data organization, search, sharing,
and discovery capabilities. DataFed enables users to easily, correctly, repeatably,
and reliably work with datasets within appropriate compute or analytic contexts
to facilitate reproducible research. We are in the process of deploying the broader
data management system described in this paper at select facilities at ORNL.
We welcome interested readers to use DataFed at https://datafed.ornl.gov and
get in touch with the authors for integrating the proposed system with their
group/facility.
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Abstract. Many scientific simulations, machine/deep learning applica-
tions and instruments are in need of significant data reduction. Error-
bounded lossy compression has been identified as one solution and has
been tested for many use-cases: reducing streaming intensity (instru-
ments), reducing storage and memory footprints, accelerating computa-
tion and accelerating data access and transfer. Ultimately, users’ trust
in lossy compression relies on the preservation of science: same conclu-
sions should be drawn from computations or analysis done from lossy
compressed data. Experience from scientific simulations, Artificial Intel-
ligence (AI) and instruments reveals several points: (i) there are impor-
tant gaps in the understanding of the effects of lossy compressed data on
computations, AI and analysis, (ii) each use-case, application and user
has its own requirements in terms of compression ratio, speed and accu-
racy, and current generic monolithic compressors are not responding well
to this need for specialization. This situation calls for more research and
development on the lossy compression technologies. This paper addresses
the most pressing research needs regarding the application of lossy com-
pression in the scientific context.

Keywords: Scientific data · Lossy compression

1 Promises of Lossy Compression for Scientific Data

In the past five years with the arrival of the pre-exascale systems, many scien-
tific applications have seen significant increase of the volume and velocity of their
produced or consumed data. This trend has numerous implications for users of
scientific data. The first implication is the significant increase of the storage need.
A concrete example of this implication’s impact on users is the storage system
cost increase of the simulation platform used at National Center for Atmospheric
Research (NCAR). In the precedent platform, the cost of the storage system rep-
resented 20% of the total procurement. In the new version of the platform, the
storage system represents more than 50% of the total procurement [1]. Another
common implication is the increase of the input/output (I/O) time relative to
the overall execution time of scientific applications. The I/O time increase is
due to the growing difference between the memory size in leadership systems
c© UChicago Argonne, LLC 2020
J. Nichols et al. (Eds.): SMC 2020, CCIS 1315, pp. 99–116, 2020.
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and the I/O bandwidth. The increase of I/O time concerns the data produced
for analysis and also the checkpoints the applications take periodically [2–6].
The generalization of heterogeneous architectures, the future exascale systems
and the upgrade of physics instruments have other implications: (i) accelerators
are difficult to saturate because of the time to move data between the accelera-
tors and the node’s main memory, (ii) exascale performance will be difficult to
achieve for many applications because the memory of the exascale systems will
not grow commensurately to the increase in floating point performance com-
pared to current systems, (iii) the increased detector resolution will exceed the
communication and storage capacities of updated instrument facilities.
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Fig. 1. Illustration of the progress of lossy compression techniques in the past five
years: rate distortion of various versions of SZ (Hurricane simulation: Step 48): SZ 1.1
[7] (2016), SZ 1.4 [8] (2017), SZ 2.0 [9] (2018), SZ 2.1.8 [10] (2019), SZ hybrid [11]
(2019), and SZ autotune [12] (2020).

The remarkable increase of scientific data volume and velocity calls for signif-
icant data reduction mechanisms. Application-specific techniques or algorithm-
specific techniques exist. Users also support generic lossy compression software
based on prediction (SZ [13], FPZIP) [14], orthogonal (or not) block trans-
forms (ZFP [15]), wavelet transforms (Vapor [16]), singular value decomposition
(Tucker decomposition [17]) and multi-grid approach (MGARD [18–21]) because
of several important characteristics:

– Generic lossy compression can achieve effective data reduction. A large body
of work [8,9,15,17,18,22–25] has shown excellent performance concerning the
data reduction speed (up to 30+GB/s on GPU [26,27]), reduction ratio (from
5:1 for particle simulations to 10:1 or even 100:1 for fluid dynamics simula-
tions1), and reduction accuracy that has improved drastically in the past
five years. For example, Fig. 1 shows the evolution of the compression quality

1 Lossy compressors can even achieve compression ratios of x100:1 for visualization
purpose, if high accuracy is not needed.
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(peak signal-to-noise ratio vs. bit-rate2) of the SZ lossy compression frame-
work [13] across its successive versions on the Hurricane datasets [28]. Figure 2
through Fig. 5 present the visual quality of the lossy decompressed data with
the bestfit version of SZ (either hybrid version [11] or the parameter auto-
tuning version [12]) for different applications/datasets from various research
domains (such as cosmology, climate and molecular simulations). We zoomed
in a small region for each case and plotted the region based on its narrowed
value range so it has a clearer palette to highlight the differences. We observed
the compression ratio reach up to 100+:1 in some cases (e.g., compressing the
velocity-x field in the Nyx cosmology simulation and the V field in Hurricane
simulation) or 30:1 (e.g., compressing Miranda simulation data) with identical
visualization between original data and decompressed data. In some cases, the
compression ratio has to be relatively low (such as 8.8:1) in order to keep an
identical visualization between the original raw data and decompressed data,
as shown in Fig. 5. These results highlight that lossy compression performance
depends on applications and data sets.

– Generic lossy compression is agnostic to the specific ways the data has been
produced or will be consumed. This is important for scientific data reuse [29].
For example, the Coupled Model Intercomparison Project [30] compares the
predictions of multiple climate models. With respect to data reduction, what
matters is preserving the scientifically important characteristics of the data
produced by these models, not the specific algorithms or numerical methods
that any particular model used to produced them. The same is true for the
field data assimilation: the design of data reduction techniques should not be
specific to an algorithm that consumes the data at one point in time because
different algorithms may reuse the data in a later time.

– Generic lossy compressors are tools used as black boxes that application devel-
opers and users do not need to maintain. There are several production quality
lossy compression software for scientific data with very similar interfaces3,
which gives users choices, provides long-term support and maintenance and
reduces the risk associated with a single source of software products. The main
lossy compressors for scientific data are supported by the Exascale Comput-
ing Project (ECP), and as such, they must abide by high software quality
standard for testing and continuous integration.

All these promises (effectiveness, performance, preservation; applica-
tion/algorithm agnosticism; third-party support and maintenance) of lossy com-
pression are quite compelling for application developers and users. However, two
important gaps limit its broad adoption by the scientific community. First, per-
formance improvement in lossy compression in the past five years mostly came
from some form of specialization. However, there is a broad spectrum of solu-
tions between generic and dedicated compression algorithms, and the research

2 Bit-rate is defined as the average number of bits used to represent each data point
after compression. That is, the smaller the bit-rate, the higher the compression ratio.

3 There is even an effort to standardize the application programming interface (API).
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(a) Original Raw Data (b) SZ hybrid version [11]

Fig. 2. Visualization (The zoomed-in image adopts a smaller value range (thus a dif-
ferent palette) to make it clearer to observe.) of original data vs. SZ decompressed
data with compression ratio of 143 on the NYX cosmology simulation data (velocity
x, PSNR = 64 dB).

(a) Original raw data (b) SZ hybrid version [11]

Fig. 3. Visualization (The zoomed-in image adopts a smaller value range (thus a dif-
ferent palette) to make it clearer to observe.) of original data vs. SZ decompressed
data with compression ratio of 138 on the Hurricane simulation data (Vf48, PSNR =
53 bB).

toward specialization is still nascent. Second, while agnosticism to the meth-
ods/algorithms used for production or consumption of scientific data is a major
strength of lossy compressors, it can also be a weakness. Losing the connection to
application-specific algorithms/methods means losing the possibility to formally
establish a profound mathematical relation between the compression error and
the algorithms or numerical methods that produce or consume the data. This
ultimately means users need to build trust on lossy compression from empirical
experiences. This is why users initially struggle to trust that lossy compression
preserves the important information in the produced or consumed data (Fig. 3).
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To fulfill the promise of lossy compression for scientific data, the community
needs to (Fig. 4):

(a) Original raw data (b) SZ autotune version [12]

Fig. 4. Visualization (The zoomed-in image adopts a smaller value range (thus a differ-
ent color palette) to make it clearer to observe.) of original data vs. SZ decompressed
data with compression ratio of 30 on the Miranda radiation hydrodynamics simulation
data (density, PSNR = 96 dB).

(a) Original raw data (b) SZ hybrid version [11]

Fig. 5. Visualization1 of original data vs. SZ decompressed data with compression ratio
of 8.8:1 on the QMCPack Quantum Monte Carlo simulation data (PSNR = 120 dB).

– develop a profound understanding of the effects (result distortion, derived
quantities distortion, convergence slow down) of lossy compression error on
different types of simulations, AI execution and experiments and build new
tools and potentially new metrics to quantify lossy compression effects;

– develop sophisticated error controls in lossy compression algorithms to pre-
serve the important information in the data that can be the data itself and
its derived quantities;
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– design and implement (potentially automatically) customizable compression
frameworks that provide further opportunities of performance optimization
through specialization without being application specific.

The following sections discuss these questions in detail, present the current
progress for several U.S. Department of Energy (DOE) applications and expose
gaps and research directions.

2 Understanding the Effect of Lossy Compression on
Scientific Data

Indisputably, the most important factor limiting the broad adoption of lossy com-
pression is the lack of profound understanding of the lossy compression error and
its effects on scientific data and the applications using them. The first part of
this section discusses different error assessment levels, and the tools and bench-
marks available to perform error assessment on scientific data. The second part
of the section discusses the overall approach used for nine different use-cases to
mitigate the errors introduced by lossy compression of scientific data.

2.1 Methodologies, Tools and Benchmarks

Our experience shows users deciding to use lossy compression algorithms for
their data only if the data result in the same scientific outcomes as with non-
compressed data. The first step to provide this guarantee is to assess the data
quality after compression. Such a guarantee is subject to the conditions and
knowledge presumed during the compression assessment. If users need to explore
new scientific directions not considered beforehand, the lossy compression may
have unexpectedly remove the key information for these new explorations.

We have observed three different levels of assessment to evaluate how the
compression results are preserving the data fidelity for science: assessment from
visualization, quantitative assessment of data distortion and quantitative assess-
ment of derived quantities distortion. In the rest of this section we refer to these
levels as level 1, 2 and 3 respectively. These three assessment levels correspond
to different trade-offs between the quality and the practicality of the assessment.

The most direct assessment method (level 1) asks human subjects if they
would derive the same scientific conclusions from a visual analysis of the lossy
decompressed data and a visual analysis of the non-compressed data. This app-
roach has been used by the NCAR climate team to assess lossy compression
quality [31]. This method quickly identifies compression defects or appropriate
compression levels. It does not provide a quantitative measure of the distortion,
and it does not help users understand the nature of compression errors. However,
this important work connects compressor developers and domain experts.

The second level of assessment characterizes and quantifies the compression
errors. Compression of scientific data originated from the visualization commu-
nities. As a consequence, the initial metrics used for quantifying the compres-
sion errors were considering visual distortions and signal analysis metrics, such
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as peak signal-to-noise ratio (PSNR), mean squared error (MSE), and struc-
tural similarity index measurement (SSIM). The discussions with application
users pointed out the importance of computing error distribution (0 centred or
skewed) and the auto-correlation of the compression error. Users often consider
the compression error as a type of noise, and they prefer to deal with pure ran-
dom noise rather than more structured alterations since structures in errors add
artifacts in the data that can lead to wrong results or wrong scientific interpre-
tations. The first generic tool providing level 2 assessment of compression errors
is Z-checker [32], which is a modular community software computing more than
30 point-wise and statistical metrics [32]. Z-checker is routinely used to help
understand the profound nature of the compression errors. Compression error
assessment tools are not only helping users gain confidence in a lossy compres-
sion software but also helping compression algorithm designers understand the
nature of the errors their algorithm produces and compare compression qualities
with other compressors. In addition, compression algorithm designers need some
common/reference datasets to test and evaluate the performance of their com-
pressors. The Scientific Data Repository Benchmark (SDRBench) [28] has been
established to provide the community of developers and users of compression
reference datasets representative of applications in different scientific domains.
Since the opening of the website in July 2019, the SDRBench datasets have
been used by researchers to assess and develop new compression methods. How-
ever, SDRBench does not provide the user compression requirements for each
scientific dataset. This gap needs to be filled to focus developers on compression
techniques relevant to the users.

The level 3 assessment compares the derived quantities computed from the
user software analysis (usually non-trivial) or application execution (i.e., in the
case of a workflow of multi-physics application) by using the decompressed data
with the derived quantities computed from the same analysis or application
execution using the non-compressed data. For example, the lossy compression
error assessment runs the halo mass distribution and the power spectrum anal-
ysis codes for the Hardware/Hybrid Accelerated Cosmology Code (HACC) [33].
These two codes are executed to compare the lossy compressed particles’ posi-
tions and velocities to the positions and velocities of the non-compressed version
of these particles. For this application, guaranteeing a maximum error bound on
each data point is not enough. The analysis codes running on these compressed
particles should produce halo mass distribution and power spectrum deviations
lower than a user specified threshold. VizAly [34] is the first tool offering a level
3 compression error assessment. It integrates user-provided analysis code and
generates visualizations to assess the distortions on derived quantities produced
by lossy compression. Currently, VizAly only integrates HACC halo mass distri-
bution and power spectrum modules. These comparisons are not always possible
to perform online (during the simulation) or even offline because they require
significant resources (storage, communication, computation) to store the non-
compressed and the compressed versions of the data and to run two instances
of the analysis of application execution codes. In such situations, users can still
rely on the quantitative assessment of data distortion (level 2).
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Research Opportunities. New research and development are needed in (i) the
understanding of the profound nature of the error produced by the most effec-
tive compressors and compression algorithms, (ii) tools to support level 1, 2 and
3 assessments, (iii) metrics to perform quickly and with limited resources accu-
rate quantitative assessment of lossy compression errors and their impacts, (iv)
benchmarks to represent with fidelity and completeness the user communities
requirements.

2.2 Understanding and Mitigating Lossy Compression Error Effects
on Applications

In a recent article [35], we exposed several of the currently identified use-cases
of lossy compression for scientific data. We detailed their diversity, their con-
straints and the current performance advanced lossy compressors can achieve
for these use-cases. The good performance of lossy compression was obtained in
these cases after a rigorous, usually long, iterative process of interactions with
the application and user teams. Table 1 presents these use-cases, applications
examples, the main potential adverse effects of lossy compression, the levels of

Table 1. Lossy compression use-cases, potential adverse effects and their mitigation

Use-cases Examples Potential adverse

effects

Assessment levels Mitigation

Visualization Climate

simulation

Visual quality,

PSNR and SSIM

alteration,

creation of

artifacts

L1, L2 Compression

parameter tuning

Reducing data

stream intensity

LCLS/APS1

X-ray data

christalography

No/wrong atom

detection

L1, L2, L3 Hybrid

lossless/lossy

compression

algorithm

Reducing

footprint on

storage

HACC1 Alteration of halo

mass distribution

and power

spectrum

L2, L3 Improvement of

compression

algorithm,

compression

parameter tuning

Accelerating

checkpoint/restart

NWChem No/slow/wrong

convergence

L3 Compression

parameter tuning

Reducing

footprint in

memory

Quantum circuit

simulation

Lower simulation

accuracy

L2, L3 New compression

algorithm

Accelerating

execution

GAMESS1 Incorrect

simulation results

L2, L3 New compression

algorithm

AI training

accelerating

CANDLE NT3 Classification

errors

L3 Compression

parameter tuning

Deep learning

model reduction

IOT1/sensors Incorrect DNN6

classifica-

tion/regression

results

L3 Compression

parameter tuning

1Glossary: LCLS: Linac Coherent Light Source. APS: Advanced Photon Source. HACC: Hard-

ware/Hybrid Accelerated Cosmology Code. CESM: Community Earth Science Model. ATM: Atmo-

spheric Model. GAMESS: General Atomic and Molecular Electronic Structure System. IOT: Internet of

Things. DNN: Deep Neural Network
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assessment used to understand the effects of the compression error and the mit-
igation defined with the users to avoid adverse effects or make the compression
errors acceptable.

The iterative process followed for each of these use-cases illustrates the need
and the difficulty of reaching a profound understanding of the effects of lossy
compression on scientific data and their derived quantities. This process involved
a series of trials and errors where the application developers, users and com-
pression teams assessed the effects of compression and tuned parameters. If the
effects were still unacceptable, the compression teams would try to develop other
algorithms and repeat the assessment and tuning steps with the application
developers and users. These steps were repeated until a solid mitigation of the
compression error was identified, tested and implemented.

These successful experiences still point out the lack of broadly established
methodology, techniques and tools to thoroughly understand the effects of lossy
compressed data on applications and analysis. Ideally, the most precise assess-
ment of the effect of the compression error on the analysis or application results
is formulating mathematically the compression error and propagating it in the
numerical algorithms and methods of the analysis or applications using the com-
pressed data. The community has progressed in this direction by formulating the
round-off error of compression schemes [36] and, more recently, by developing
formal analysis of the impact of lossy compression error on some numerical meth-
ods [37,38]. One of the very first works in this domain evaluates the feasibility
of using lossy compression in checkpointing partial differential equation simu-
lations by leveraging their numerical properties [3]. However, the mathematical
link between the compression error and the application or analysis is not always
feasible because of the complexity or requirements of the numerical methods.
For example, Agullo et al. [37] formulates the impact of lossy compression error
on the flexible generalized minimal residual method (FGMRES) linear algebra
algorithms. Yet, formulating the impact of compression errors on GMRES itself
(as opposed to FGMRES) seems extremely difficult because lossy compression
does not maintain the orthogonal vector space.

Research Opportunities. New research and development are needed in (i) the
mathematical formulation of compression error and its propagation in numerical
methods for simulation and analysis, (ii) identification of compression algorithms
that are friendly to numerical methods, (iii) identification of numerical methods
for simulation or analysis that are more tolerant to compression errors.

3 Sophisticated Error Controls to Preserve Derived
Quantities and Features

Until recently, lossy compressors for scientific data at best provided point-wise
error control. In these compressors, users control the data distortion by setting
absolute and relative error bounds [7,8,15,23]. This type of error control pro-
vides an important guarantee for users that the data will not be distorted beyond
a certain level on each data point. Some users are also interested in statistical
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error controls. Some compressors added this type of controls. For example, SZ
provides fixed PSNR control [39]. In that mode, the user specifies a PSNR in
the compressor command (or API), and the compressor reduces the data mak-
ing sure the lossy compressed data has a PSNR no lower than the one fixed by
the users. MGARD [18] can also provide the control of MSE. However, neither
point-wise error controls nor statistical error controls can prevent a compressor
from introducing undesired artifacts in the compressed datasets that are unde-
sirable for users. For example, artifacts have been reported by climate scientists
testing lossy compressors [40]. Moreover, users want to keep important features
in their datasets, and the current point-wise and statistical error controls pro-
vided by lossy compressors are insufficient for certain applications to preserve
this information. For example, some analysis algorithms running on fusion data
focus on the number of local maxima, ISO area, ISO volume, and the number of
ISO connected components [41]. Ultimately, this raises the question of feature
preservation in lossy compression.

Research teams have identified three directions to preserve advanced char-
acteristics of datasets, like features, that we can refer to as white box, grey box
and black box. In the white box approach, the features preserved after com-
pression are formalized mathematically and integrated into the error control
algorithms of the compressor. Examples of this white box approach are lossy
compression algorithms designed to respect critical points in flows [42] or more
generally important structures in the dataset through topological data analysis
[43]. Another example is the IDEALEM compression algorithm [24] that specif-
ically preserves the distribution of the data by segments in the dataset with-
out preserving the data order. When possible, the white box feature-preserving
approach provides excellent compression performance and feature preservation.
However, expressing feature mathematically could be too complex for designing
a compression scheme integrating a mathematical formulation of the features to
preserve. Another important limitation is this approach requires specific com-
pression algorithm designs for each feature to preserve. Moreover, how to pre-
serve a combination of features in a lossy compressor has not been addressed. The
grey box approach leverages user-provided feature detection algorithms to assist
the lossy compression. The idea is to compress differently (different block sizes,
different algorithms, different meshing, etc.) the features and the rest of the data
in the dataset, in order to maximize feature preservation. The lossy compres-
sion scheme developed for LCLS in the context of the ECP [35] compresses the
X-ray detector images using a peak finding stage that separates the peaks of the
images from the background. The peaks are kept intact while the background is
compressed with high error bounds. This approach is nascent, and more research
is needed to understand how to efficiently integrate user-provided feature detec-
tion algorithms in compression schemes. The black box direction attempts to
use the controls offered by the compression algorithms to preserve the impor-
tant features. A control loop uses an iterative optimization process searching
for the compressor control settings, which will preserve the features important
to users and optimize the compression ratios. The control loop automatically
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compares the results of user-defined feature extraction/detection algorithms
from the decompressed data with the ones obtained from the non-compressed
data. Depending on the comparison results, the compressor controls are relaxed
or tightened to optimize the feature preservation/compression ratio trade-off.
The principle of the control loop concept for black box feature preservation has
been successfully validated for a very simple feature: final compressed file size
[44]. New tests are ongoing to evaluate the capability of the control loop concept
to preserve more sophisticated features. However, without adequate controls, the
optimization process might not find any good solution.

Research Opportunities. New research and development are needed in (i) white
box approach: mathematical formulation of features to preserve and propagate
in compression algorithms, (ii) grey box approach: identification of methods and
interfaces for the integration of user-defined feature detection algorithms in lossy
compression pipelines, (iii) black box approach: identification of new compressor
error controls allowing the preservation of different features in scientific datasets
while providing effective compression, (iv) black box approach: search and opti-
mization frameworks to select parameters for compression pipelines respecting
user-defined derived quantities and features.

4 Customizable Compression Frameworks

One of the key characteristics of compression, in particular of lossless compres-
sion, is agnosticism. Most lossless compressors (GZIP, BZIP, BLOSC, Zstd, etc.)
have been designed and optimized to compress streams of bytes. Compressing
streams of bytes is generally not specific to any application or subject to specific
data formats such as int, float, double, etc. Additionally, compressing streams of
bytes provides acceptable performance (speed, compression ratio) in many situ-
ations. When applications have higher data reduction requirements (e.g., higher
compression ratio while keeping decompressed data quality high), specific com-
pression algorithms are needed. This is the case in video (MPEG, AV1), photo
(JPEG) and audio (MP3).

In the beginning, compressors for scientific data were designed to address
the specific characteristics of scientific data as opposed to consumer application
data. Various compression algorithms target applications demanding high lev-
els of compression and data preservation. Various compression algorithms, for
instance, are optimized for floating point data (SZ [7,8], FPZIP [14], ZFP [15],
FPC [45], etc.), medical image data and genomics data. Most compression algo-
rithms are designed to be generic: a single algorithm, potentially parametriz-
able, is used for many different types of scientific data (from simulation data
to instrument images) and for different use-cases (visualization, storage foot-
print reduction, I/O acceleration, etc.). However, in practice, lossy compression
algorithms perform differently on various datasets. For example, no single algo-
rithm is known to effectively compress 1D arrays of particles or quantum chem-
istry datasets and 3D arrays of computational fluid dynamics (CFD) datasets.
Another example is the Tucker decomposition that performs particularly well at
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high compression ratios for highly dimensional datasets [17,25]. With the increas-
ing demand in compression performance for exascale platforms and upgrades
of scientific instruments, application agnostic compression schemes will become
even less relevant. This observation has recently resulted in a body of research
focusing on the automatic selection of compression algorithms. These selection
methods either estimate the compression performance based on a modeling of the
compression algorithms of different compressors or directly compares the perfor-
mance of different compression algorithms on samples of the data to compress
[46,47]. Compression algorithm selection is only effective to a certain extent:
if none of the compression schemes have been designed to effectively compress
some datasets, such a selection-based compression method will not help.

In order to obtain high compression ratios and performance with accept-
able data distortions regarding data features, a potential strategy would be to
design, develop and optimize dedicated compression schemes for each applica-
tion with different needs and requirements. Nonetheless, the diverse use-cases
and features that users want to preserve require too much effort to develop and
maintain many lossy compressors, making the dedicated compression approach
unpractical. Specializable or customizable compressors offer a third direction
between generic application agnostic compressors and dedicated compressors.
One example of a cutomizable compressor is the SZ lossy compression frame-
work [7–9]. The SZ framework allows various customizations for improving com-
pression quality and performance. Specifically, the SZ framework has three main
stages: decorrelation based on prediction, approximation based on quantization
and a customized entropy/dictionary encoding. The recent generic version of the
SZ compressor [9] combines three predictors and selects the best fit one for each
fine-grained block (e.g., 6 × 6 × 6 for 3D dataset) of the dataset based on data
sampling during the compression. Moreover, extensions of SZ and ZFP have
been proposed to improve their performance in certain situations. For example,
several studies have explored adding different preconditioning stages [23,48].

The fundamental multi-stage architecture of lossy compressors combines dif-
ferent algorithms for each stage and naturally leads to the principle of customiza-
tion of stage combination. This principle has been used for several applications
using different customizations of the SZ compression framework. Table 2 illus-
trates the benefit of customization, by comparing the generic and customized
versions of SZ for different applications. The table also shows the implemented
customization.

Table 3 and Fig. 6 present another illustration of the benefit of customization.
Table 3 shows how the performance of SZ for particle datasets was optimized
through successive customization steps. Customization allowed increasing the
compression ratio by up to 67% and the compression speed by 9X. HACC is an
N-body simulation that can involve trillions of particles at each snapshot, and
the particles’ positions and velocities are maintained using six 1D arrays (x, y, z,
vx, vy, and vz). Figure 6 shows that, at the same time as the compression ratio
and speed improved, the compression distortions on positions reduced across
SZ versions. In this compression assessment, we targeted a compression ratio
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Table 2. SZ customization for different applications

Application Generic
performance

Customization Customized performance

Cosmology CR = 3.8
(Velocities)

Log precontionner for
relative error bounds

CR = 4.2 [9]

Quantum
chemistry

CR = 7 New pattern matching
based predictor

CR = 16.8 [49]

Quantum circuit
simulation

CR = 16–25 New quantization
stage

CR = 33–36 [50]

Light source CR = 14.5 New preconditioning
to adjust compression
dimension setting

CR = 18.1 [35]

Molecular
dynamics

CR = 4.3 New predictor based
on time-dimension

CR = 10.7 [22]

DNN models
(AlexNet)

CR = 15.1 Pruning
preconditioner

CR = 45.5 [51]

of (∼6:1) for all versions of SZ. To reach this compression ratio, different error
bounds were used for the different version of SZ (0.04 for sz 1.1, 0.021 for sz 1.2
and 0.01 for sz 2.1, respectively). With a lower error bound, SZ 2.1 produces
much less distortion than previous version for the same compression ratio.

Table 3. Compression ratio & performance of different SZ versions on HACC’s dataset
(absolute error bound = 0.003 for x, y, z; relative error bound = 1% for vx, vy, vz)

x y z

Compressor CR Throughput CR Throughput CR Throughput

SZ 1.1 3.51 20.8 MB/s 2.9 23.2 MB/s 2.76 23.6 MB/s

SZ 1.4 4.96 81 MB/s 4.8 74.3 MB/s 4.61 74.5 MB/s

SZ 2.0.2 4.96 104 MB/s 4.8 95 MB/s 4.61 95 MB/s

SZ 2.1.8 4.96 189.6 MB/s 4.8 178 MB/s 4.61 202 MB/s

vx vy vz

Compressor CR Throughput CR Throughput CR Throughput

SZ 1.1 N/A N/A N/A N/A N/A N/A

SZ 1.4 3.74 57.5 MB/s 3.76 58.2 MB/s 3.8 58.5 MB/s

SZ 2.0.2 4.16 66.2 MB/s 4.2 71.1 MB/s 4.24 73.5 MB/s

SZ 2.1.8 4.14 144 MB/s 4.16 142 MB/s 4.22 143 MB/s

Composing a customized compression pipeline for an application is non-
trivial because it involves selecting the algorithms and parameters for each stage.
This composition is mainly done manually for each application or use-case and
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Fig. 6. Particles’ positions in the original dataset and with different versions of SZ
(HACC) for the same compression ratio.

requires a significant number of trials. A true realization of the compressor cus-
tomization approach would require an automatic process searching for the com-
pression pipeline (succession of stages and their parametrization) based on user
requirements. Ideas along the line of automatic composition or synthesis of com-
pression pipelines have been published for lossless compressors. We refer the
readers to [52] for a list of previous works on this domain. Automatic composi-
tion of lossy compression pipelines for floating point data would be more complex
because for at least three reasons: 1) it requires to consider in the search problem
the user requirements with respect to data accuracy. 2) the introduction of AI
algorithms notably in the prediction stage [53] adds the AI training process in
the search problem, 3) the recent introduction of preconditioning stages increases
the size of he compression pipeline and increases the search space.

Research Opportunities. New research and development are needed in (i) under-
standing and modeling the role of each compression stage in the different aspects
of the compression performance, (ii) developing flexible, modular compression
frameworks capable of composing compression pipelines, (iii) developing libraries
of interchangeable compression stages, (iv) designing automatic techniques to
select and compose lossy compression pipelines responding to user needs and
requirements.

5 Conclusion

Lossy compression can become a game changer technology for scientific com-
puting by accelerating I/O, communication and computation, and by allowing
to store more scientific data in memory or on storage systems and allowing to
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compute larger problems faster than before. This paper discussed the current
situation of the lossy compression for scientific data. In summary, the compres-
sion performance (compression ratios and speed) is promising, but the broad
adoption of lossy compression for scientific data is limited by the lack of trust
that users have in the lossy compressors to keep important scientific information
(data and derived quantities) in the compressed version of the dataset. We have
presented and discussed the most pressing research needs regarding the appli-
cation of lossy compression in the scientific context: increase the user trust in
lossy compression and improve the performance through customization. We also
listed research directions that we believe are important to fulfill the promises of
lossy compression for scientific applications.
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Abstract. A key emerging pattern in deep learning applications is the
need to capture intermediate DNN model snapshots and preserve or clone
them in explore a large number of alternative training and/or infer-
ence paths. However, with increasing model complexity and new train-
ing approaches that mix data, model, pipeline and layer-wise parallelism,
this pattern is challenging to address in a scalable and efficient manner.
To this end, this position paper advocates for rethinking how to repre-
sent and manipulate DNN learning models. It relies on a broader notion
of data states, a collection of annotated, potentially distributed data sets
(tensors in the case of DNN models) that AI applications can capture at
key moments during the runtime and revisit/reuse later. Instead explic-
itly interacting with the storage layer (e.g., write to a file), users can “tag”
DNNmodels at keymoments during runtimewithmetadata that expresses
attributes and persistency/movement semantics. A high-performance run-
time is the responsible to interpret the metadata and perform the neces-
sary actions in the background, while offering a rich interface to find data
states of interest. Using this approach has benefits at several levels: new
capabilities, performance portability, high performance and scalability.

Keywords: Deep learning · State preservation · Clone · Model reuse

1 Introduction

Deep learning applications are rapidly gaining traction both in industry and
scientific computing. A key driver for this trend has been the unprecedented
accumulation of big data, which exposes plentiful learning opportunities thanks
to its massive size and variety. Unsurprisingly, there has been significant interest
to adopt deep learning at very large scale on supercomputing infrastructures
in a wide range of scientific areas: fusion energy science, computational fluid
dynamics, lattice quantum chromodynamics, virtual drug response prediction,
cancer research, etc.

Initially, scientific applications have gradually adopted deep learning more
or less in an ad-hoc fashion: searching for the best deep neural network (DNN)
model configuration and hyperparameters through trial-and-error, studying the
tolerance to outliers by training with and without certain datasets, etc. Often,
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the lack of explainability, i.e., being able to understand why a DNN model learned
certain patterns and what correlations can be made between these patterns and
the training datasets was overlooked if the results were satisfactory. However,
with increasing complexity of the DNN models and the explosion of the training
datasets, such a trend is not sustainable. Scientific applications are particularly
affected by this because they are often mission-critical (e.g., a patient misdiag-
nosis can have severe consequences), unlike many industrial applications (e.g., a
misclassification of a picture as a dog instead of a cat is mostly harmless).

In a quest to solve this challenge, systematic approaches are beginning to
emerge: guided model discovery where the DNN architecture [26] and hyperpa-
rameters [3] are automatically identified, sensitivity analysis [29], which is used
to identify what parts/layers of the DNN model and/or training samples are the
most influential the learning process and how robust the DNN model is regard-
ing tolerance to outliers or transfer learning (i.e., ability to reuse the learned
patterns to solve related problems), etc.

All these approaches rely on several fundamental data management abilities:
(1) capture intermediate snapshots of the DNN model in order to study its
evolution in time and potentially reuse it later; (2) clone a DNN model whose
training has progressed up to a point into many parallel alternatives where slight
variations are introduced; (3) apply the FAIR principles [2] (findable, accessible,
interoperable, reusable) to the snapshots, to make it easy to navigate through
their evolution and/or search for interesting snapshots that can be reused.

However, with increasing complexity and sizes of DNN models and train-
ing data, a mix of data parallel, model parallel, pipeline parallel and layer-wise
parallel approaches are emerging to speed-up the training process. In this con-
text, a training instance is not a single process anymore, but an entire group
of tightly coupled processes that are distributed across many devices and/or
compute nodes of large scale HPC infrastructures. Such groups of processes col-
laboratively work on a shared, distributed DNN model state, exhibiting specific
properties and access patterns. In addition, HPC data centers are increasingly
equipped with complex heterogeneous storage stacks (multi-level memory hier-
archies on compute nodes, distributed caches and burst buffers, key-value stores,
parallel file systems, etc.). Under such circumstances, the fundamental data man-
agement abilities mentioned above become highly challenging to implement in a
scalable and efficient manner.

In this position paper we advocate for DataStates, a new data model that
addresses the aforementioned challenges by rethinking how to represent and
manipulate scientific datasets. At its core is the notion of a data state, which
is a collection of annotated, potentially distributed data structures that appli-
cations can capture at key moments during the runtime and revisit/reuse later.
Instead explicitly interacting with the storage layer (e.g., to save the dataset into
a file), users define such coupled datasets and “tag” them at key moments dur-
ing runtime with metadata that expresses attributes and persistency/movement
semantics. Tagging triggers asynchronous, high performance I/O strategies that
run in the background and capture a consistent snapshot of the datasets and
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associated metadata into the lineage, a history that records the evolution of the
snapshots. Using dedicated primitives, users can easily navigate the lineage to
identify and revisit snapshots of interest (based on attributes and/or content)
and roll back or evolve the lineage in a different parallel direction.

Using this approach, clone and revisit of DNN model states become
lightweight primitives focused on high performance, scalability and FAIR capa-
bilities, which not only accelerates existing approaches for model exploration,
sensitivity analysis and explainability, but also encourages new algorithms and
techniques that can take advantage of frequent reuse of intermediate DNN mod-
els. We summarize our contributions as follows:

– We discuss a series of challenges and opportunities that arise in the context of
deep learning, where a mix of data parallel, model parallel, pipeline parallel
and layer-wise parallel approaches are increasingly applied to improve the
performance and scalability of the training (Sect. 2).

– We introduce an overview of DataStates, the data model and runtime we
advocate in this paper. We insist both on how the notion of data states can
be used as a fundamental abstraction to capture, search for and reuse inter-
mediate datasets, as well as the advantages of such an abstraction (Sect. 3).

– We position DataStates in the context of state-of-art, insisting both on the
gaps filled by our approach and the complementarity that can be achieved by
using DataStates in conjunction in other approaches (Sect. 4).

2 Background

Deep learning approaches have evolved from independent training and infer-
ence into complex workflows (Fig. 1): they involve training sample pre-processing
and augmentation (e.g., create more training samples by stretching or rotating
images), model discovery (both DNN architecture and hyperparameters), train-
ing and validation of the inference, sensitivity analysis used to explain the model
and/or influence the data pre-processing and model discovery.

In this context, there is a need to explore a large number of alternatives, which
applies for each step of the workflow. For example, model discovery strategies
based on evolutionary techniques [26] (such as genetic algorithms) need to main-
tain a large population of promising DNN model individuals, which are combined
and/or mutated in the hope of obtaining better individuals. Training a DNN model
may also involve alternatives, especially in the case of reinforcement learning [35],
where there are multiple variations of environments and alternative actions possi-
ble. DNN models with early exits [30] are becoming increasingly popular: in this
case, the inference can take alternative shorter (and thus faster) paths through the
model layers when they provide sufficient accuracy (e.g., non-ambiguous regions
in a classification problem). Sensitivity analysis [29] needs to explore many alter-
native training paths that include/exclude certain training samples and/or layers
in order to understand their impact. For example, CANDLE [32] (Cancer Deep
Learning Environment) employs an approach where the input data is split into
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Fig. 1. Structure of a modern deep learning workflow

regions and the training process is forked into alternative directions, each of which
excludes one of the regions. This process continues recursively for each excluded
region until a desired granularity for the excluded training samples is reached,
enabling the study of their impact in the training process.

Such alternatives introduce the need for advanced data management
approaches: capture intermediate DNN model/layer snapshots as the training
(or inference) progresses and then either preserve them for later study/revisiting,
or clone them for the purpose of forking the training (or inference) into different
parallel directions. To make these snapshots usable, several capabilities related
to the FAIR principles (findable, accessible, interoperable, reusable) are needed:
automatically capture the evolution of the snapshots, expose their properties,
enable search based on such properties, reshape the snapshots on-the-fly to adapt
to a new context where it needs to be used.

However, providing such advanced data management capabilities is challeng-
ing, because DNN training approaches are constantly being adapted to take
advantage of large-scale infrastructures. In this context, the most widely used
technique is synchronous data-parallel training. It creates replicas of the DNN
model on multiple workers, each of which is placed on a different device and/or
compute node. We denote such workers as ranks, which is the terminology typ-
ically used in high performance computing (HPC). The idea is to train each
replica in parallel with a different mini-batch, which can be done in an embar-
rassingly parallel fashion during the forward pass on all ranks. Then, during
back-propagation, the weights are not updated based on the local gradients, but
using global average gradients computed across all ranks using all-reduce oper-
ations. This effectively results in all ranks learning the same pattern, to which
each individual rank has contributed. The process is illustrated in Fig. 2(a).

Model parallelism [11] is another complementary approach (Fig. 3). It works
by partitioning the DNN model across multiple ranks, each of which is running
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(a) Data parallelism: DNN model is repli-
cated, local gradients are averaged.

(b) Pipeline parallelism: DNN model
partitioned and distributed as stages
(full layers).

Fig. 2. Data parallelism vs. pipeline parallelism (adapted from [19])

on a different device and/or compute node. This solves the problem of large
DNN models that do not fit in the memory of a rank, but requires data transfers
between operations and disallows parallelism within an operation.

Pipeline parallelism [19] combines model parallelism with data parallelism.
The idea is to partition the DNN model into stages, each of which is made of
one or more layers (and can be replicated like in the case of data-parallelism).
Each stage is assigned to a different rank, which effectively form a pipeline
(Fig. 2(b)). Unlike data and model parallelism, where only one mini-batch is
active at a given moment for the whole duration of the training step, pipeline
parallelism injects multiple mini-batches into the stages one after the other:
during the forward pass, each stage sends the output activations to the next
stage, while simultaneously starting to process another mini-batch. Similarly,
after completing the backward-propagation for a mini-batch, each stage sends
the gradients to the previous stage and begins to process another mini-batch.

DL algorithms take advantage of multi-core and hybrid architectures (e.g.,
CPUs + GPUs) to parallelize the gradient computation and weight updates.
Specifically, once a rank has finished computing the local gradients for a layer,
it immediately proceeds to compute the local gradients of the previous layer. At
the same time, it waits for all other ranks to finish computing their local gradi-
ents for the same layer, then updates the weights (based on the average gradients
obtained using all-reduce in the case of data-parallelism). This is called layer-
wise parallelism. Another way of reasoning about this process is by means of
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Fig. 3. Model parallelism: DNN model is partitioned and distributed

a DAG (directed acyclic graph), where each layer is a pipeline: compute local
gradients, average gradients globally, update weights. The local gradient com-
putation of each layer is a dependency for both the local gradient computation
of the previous layer and the rest of the pipeline: once it is complete, both paths
in the DAG can be executed in parallel.

As a consequence, the distributed nature of DNN model snapshots and the
complex multi-level parallelism considerations make the problem of capturing
and preserving/cloning intermediate DNN model snapshots non-trivial. This is
further augmented by the need to adopt the FAIR principles and the increasingly
complex heterogeneous storage stacks [14] that are deployed in modern HPC
data centers. Nevertheless, there are also significant opportunities in this space:
according to our previous study [13], the combination of data parallelism and
layer-wise parallelism leads to subtle delays that can be exploited to overlap the
back-propagation with fine-grain asynchronous data management operations in
the background, which can significantly reduce their overhead. We demonstrated
the feasibility of this idea both for DNN model checkpointing [23] and DNN
model cloning [25], obtaining an overhead reduction of an order of magnitude
compared with other state-of-art alternatives.

3 DataStates: An Overview

In this section, we introduce the main ideas and principles behind DataStates,
the data model we advocate in this paper.

In a nutshell, a data state is a collection of annotated, potentially distributed
data structures that applications can capture at key moments during the run-
time. For the purpose of this work, we assume such distributed data structures
to represent the DNN model state. The application indicates such key moments
explicitly (noting that automation of this process opens an interesting research
question). More formally, a data state is tuple (C,Ms,Ma) that defines a content
C and any associated metadata Ms and Ma. We differentiate between summary
metadata (denoted Ms), used to label and/or summarize C, and actionable meta-
data (denoted Ma), used to express intents over how C is managed. These intents
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take the form of hints (e.g., access pattern) and/or properties (e.g., durability,
scope, relationship to other data states). Users do not care how the intent is
materialized: it is the job of the DataStates runtime to formulate an appropriate
plan through a series of actions, which in our case refer to persisting, caching
and fetching a data state. This is a general principle: new intents and action
plans can be added as needed.

Many distributed ranks (owners) can share the same data state and mutate it
collaboratively by updating its content and/or metadata. We assume the owners
are directly responsible for concurrency control and consistency, which in our
case is transparently handled by the deep learning frameworks. When the owners
reach a key moment during runtime (e.g., an epoch of the training has finished),
they tag the data state. This triggers a transition into a new data state. From the
owner’s perspective, nothing changed: they can continue working on C as usual.
Meanwhile, in the background, the runtime applies the action plan corresponding
to Ma for the original data state as it was at the moment of tagging. The runtime
guarantees that any side effects due to the action plan are tied to the original data
state and do not affect the new data state (which may trigger internal temporary
copies during tagging or copy-on-write). A data state that was tagged is stable
if its action plan completed successfully and unstable otherwise. It is illegal to
access unstable states, but the runtime offers support to query about their status
and wait for them to become stable.

Both the data states and the transitions between them are recorded into
the lineage, which keeps the evolution of the data states. The lineage exposes
primitives to navigate (i.e., move to a successor or predecessor) and to search
(i.e., find data states that satisfy given properties) the lineage. Applications can
use such primitives to discover and visit interesting data states. For example,
this can be used to follow the evolution of tagged DNN model states during
training or to search for previously tagged intermediate DNN models based on
their accuracy and/or other attributes. Furthermore, each data state can be
part of one or more scopes, which are explicitly specified in Ma. To avoid the
explosion of storage space utilization, non-critical data states that have gone out
of scope (e.g., non-critical or locally relevant intermediate DNN models) and
their transitions can be pruned from the lineage as needed. Pruning is subject
to garbage collection algorithms, but can also be triggered explicitly through a
dedicated primitive.

The lineage can be combined with two additional powerful primitives: fork
and reshape. Both of them are similar to tagging (i.e., they trigger a transi-
tion to a new data state and the execution of an asynchronous action plan)
but with important differences. Fork creates a clone of the data state on an
entirely different set of processes and “splits” the lineage into two independent
directions that can evolve separately. For example, fork can be used to explore
an alternative direction for training a DNN model (e.g., using different hyper-
parameters and/or training samples). Reshape enables the processes to change
the layout and/or distribution of C, by specifying appropriate attributes in Ma.
Specifically, this refers to operations such as migrate (to different processes)



124 B. Nicolae

and shuffle (i.e., exchange pieces of C between processes, which is a common
pattern in distributed training of DNN models). Combined with tagging and
search/navigation, these two primitives allow flexible strategies to explore multi-
ple parallel evolutions and revisit/reuse previous data states. Note the versatility
of reshape, which can be extended with multiple other patterns. For example,
data states could be used to record a lineage for Tensorflow [1] by introducing
support for tensor operations: slice, rebalance, stack, etc.

This approach has several advantages. First, it introduces native constructs
that addresses the FAIR (findable, accessible, inter-operable, reusable) princi-
ples [2]: (1) findability is directly enabled by the lineage through navigation and
search capabilities; (2) accessibility is enabled in a declarative fashion by spec-
ifying the desired intent (thus freeing applications from having to worry where
their data is and how to bring it where it is needed); (3) inter-operability hiding
the implementation of the I/O strategies from the user (thus eliminating differ-
ences in the interpretation of actionable metadata); (4) reusability is naturally
facilitated by a single, unified view of all data states and the relationship between
them, which can be revisited as desired.

Second, the separation of the intents from the actual implementation of the
constraints and desired effects they represent is an important step towards per-
formance portability, i.e., avoiding the need to customize the application codes on
each machine to account for differences in performance characteristics, custom
vendor APIs, etc. Specifically, since data states capture the intent only, action
plans can be customized for a dedicated supercomputing infrastructure, poten-
tially taking advantage of differences in architecture, performance characteristics
of heterogeneous storage and vendor-specific features in order to introduce spe-
cific optimizations.

Third, the design of DataStates is lightweight and data-centric. DataStates is
focused on the evolution of data and metadata alone, leaving other components
to worry about computational and synchronization aspects. The data states
are wrapping in-memory user data structures directly and are close to their
intended life-cycle, therefore minimizing overheads related to data movements
(which is not the case when using external repositories). Furthermore, DataS-
tates masks the data management overhead asynchronously in the background,
therefore minimizing the interruption of the application. Combined with clever
interleaving of such asynchronous operations at fine-granularity during the back-
propagation, this approach becomes crucial in facilitating the goal of achieving
high performance and scalability.

4 Related Work and Positioning

Checkpoint-restart is a well researched HPC pattern relevant in the context of
clone and revisit. In this regard, multi-level checkpointing, as adopted by frame-
works such as SCR [18] and FTI [4], is a popular approach that leverages comple-
mentary strategies adapted for HPC storage hierarchies. VELOC [24,31] takes
this approach further by introducing asynchronous techniques to apply such
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complementary strategies in the background. When the checkpoints of different
processes have similar content, techniques such as [20,21] can be applied to com-
plement multi-level checkpointing. However, redundancy is detected on-the-fly,
which can be an unnecessary overhead for clone and revisit (e.g., model replicas
are known to be identical for data-parallel training). Dedicated checkpointing
techniques for deep learning are rudimentary: TensorFlow checkpoints model to
files in its SavedModel format,1 or in HDF5 files through Keras.2 These file-
based methods, while simple and adapted for single-node training, are becoming
a bottleneck when scaling data-parallel training to a large number of compute
nodes. Our own previous work [23,25] introduced scalable approaches to address
these limitations. Although not flexible enough in the general clone and revisit
scenarios, they can be used as a building block for DataStates.

In a quest to achieve scalability and flexibility, HPC storage stacks have
become increasingly heterogeneous [14]. In addition to parallel file systems, mod-
ern supercomputers feature a variety of additional storage subsystems (e.g., burst
buffers [7] or key-value stores such as DAOS [16]) and deep memory hierarchies
(HBM, DDRAM, NVM). Such storage subsystems focus on raw I/O performance
acceleration by implementing low-level read/write or put/get abstractions. They
complement well the rigid POSIX model used by parallel file systems (e.g., lack
of efficient support for fine-grained I/O operations and concurrency control).
However, this is not enough to implement the high-level capabilities necessary
for clone and revisit. Furthermore, the large diversity of services leads to added
complexity and limited sharing and reuse potential because of the lack of per-
formance portability.

In the big data community, Spark [28,34] has gained considerable traction as
a generic analytics framework. Part of its success lies in the functional data pro-
cessing model that hides the details of parallelism from the user, enabling ease of
use and performance portability through high-level in-memory transformations.
Notable in this context is the concept of RDDs [33] (Resilient Distributed Data
Sets), which are Spark’s abstraction for intermediate data. Despite efforts to
leverage heterogeneous storage for RDDs (e.g., Apache Ignite [6]), they are tied
to the rigid programming model of Spark, which emphasizes loosely coupled pat-
terns and high-level languages that trade off performance for productivity. There-
fore, such abstractions are unsuitable for the HPC ecosystem, which emphasizes
high performance and scalability, tightly-coupled patterns and hybrid program-
ming models.

Provenance tracking and reproducibility is another area closely related to
DataStates. In the HPC ecosystem, EMPRESS [12] aims to provide an alterna-
tive to rudimentary attribute capabilities offered by HDF5 and NetCDF through
extensible metadata. This broadens the scope beyond single files or application-
specific formats, but does not feature a lineage. In the Spark ecosystem, RDDs
feature a computation-centric lineage that records what data transformations
were applied. This lineage is hidden from the application and used internally to

1 https://www.tensorflow.org/guide/saved model.
2 https://www.tensorflow.org/guide/keras/save and serialize.

https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/guide/keras/save_and_serialize
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recompute RDDs (e.g., in case of failures or need to reuse). By contrast, DataS-
tates has the opposite goal: a lineage that records actual data snapshots anno-
tated with metadata (thus avoiding expensive recomputation), which is exposed
to the application and used as a tool to revisit previous states. In itself, this is
already a powerful introspection mechanism that aids provenance tracking and
reproducibility. Of course, there is value in combining both approaches to cre-
ate a complete picture. Unfortunately, capturing the computational context in
the HPC ecosystem is nontrivial, as it involves a large number of libraries and
runtimes. Containers are one possible solution and are used by approaches such
as Data Pallets [15]. DataStates can complement well such efforts.

Versioning and revision control systems (e.g. SVN [10], GIT [8], Mercurial [5])
are widely used to keep track of changes to source code during software develop-
ment. They feature native support for data-centric provenance: users can keep
track of successive changes and revisit, roll-back, branch, merge, etc. They also
feature an entire array of space-efficient techniques to store only incremental dif-
ferences. However, these optimizations are designed for text data (mostly source
code) and are not designed for high-performance and scalability (they assume
each user has room to maintain a whole local copy of the repository). Systems
were proposed before to address this issue: For example, BlobSeer [22] is a dis-
tributed data store for binary large objects that manages intermediate snapshots
much like revision control systems. However, it was not designed to handle het-
erogeneous data and metadata (its abstraction is a blob, i.e., a large sequence of
bytes): largely, it behaves like a key-value store with versioning support, therefore
missing support to search and navigate the history.

Repositories for VM images [27] and containers (e.g. Docker [17]) are an
industry standard to facilitate collaboration and sharing between multiple users
for computational environments. In a similar spirit, recent efforts such as
DLHub [9] aim to build model repositories for deep learning applications: users
publish, discover and share full models, including dependencies (e.g., Python
environment), into executable servables (that may include Docker images, Ama-
zon S3 buckets, etc.) through REST APIs. DataStates also focuses on enabling
search and reuse semantics, but from a different perspective: it introduces a
general data model (useful beyond deep learning), lightweight (HPC-oriented)
and data life-cycle oriented (mix ephemeral with persistent data, leverage local
storage and in-situ capabilities, data-centric lineage). This is more appropriate
for the DNN model clone and revisit scenarios we target, where an external
repository can become a bottleneck. On the other hand, DataStates is well com-
plemented by approaches like DLHub, as they can handle security and other
aspects needed to enable multi-user sharing beyond a single supercomputer.

5 Conclusions

In this position paper we have introduced DataStates, a new data model that
exposes high-level primitives to capture, fork, search and reuse of scientific
datasets. Such high-level primitives are especially important for an efficient
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implementation of many deep learning scenarios that involve the need to cap-
ture intermediate DNN models and explore a large number of alternative training
and/or inference paths.

Despite increasing complexity due to distributed DNN model state, as well
as a mix of distributed training approaches (data, model, pipeline, layer-wise
parallel), DataStates is well positioned to leverage the opportunity such cir-
cumstances present, especially with respect to overlapping the back-propagation
phase of training with asynchronous fine-grain operation in the background in
order to progress on data management aspects with minimal overhead on an
ongoing training. Additionally, DataStates has three other advantages: it brings
FAIR (findable, accessible, inter-operable, reusable) semantics to deep learning
frameworks, it enables performance portability by separating data management
intents (defined by the user) from actions necessary to satisfy them, it enables
high performance and scalability by introducing lightweight, in-situ data manip-
ulation semantics that are close to the data life-cycle of DNN models.

Encouraged by promising initial results, especially for the related problem
of scalable checkpointing and cloning of DNN models for data-parallel training
approaches, we plan to illustrate in future work the benefits of DataStates in the
context of deep learning.

Acknowledgments. This material is based upon work supported by the U.S. Depart-
ment of Energy (DOE), Office of Science, Office of Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357.
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Abstract. The convergence of data-intensive and extreme-scale com-
puting behooves an integrated software and data ecosystem for scientific
discovery. Developments in this realm will fuel transformative research
in data-driven interdisciplinary domains. Geocomputation provides com-
puting paradigms in Geographic Information Systems (GIS) for interac-
tive computing of geographic data, processes, models, and maps. Because
GIS is data-driven, the computational scalability of a geocomputation
workflow is directly related to the scale of the GIS data layers, their
resolution and extent, as well as the velocity of the geo-located data
streams to be processed. Geocomputation applications, which have high
user interactivity and low end-to-end latency requirements, will dramati-
cally benefit from the convergence of high-end data analytics (HDA) and
high-performance computing (HPC). In an application, we must identify
and eliminate computational bottlenecks that arise in a geocomputation
workflow. Indeed, poor scalability at any of the workflow components is
detrimental to the entire end-to-end pipeline. Here, we study a large geo-
computation use case in flood inundation mapping that handles multiple
national-scale geospatial datasets and targets low end-to-end latency. We
discuss the benefits and challenges for harnessing both HDA and HPC for
data-intensive geospatial data processing and intensive numerical mod-
eling of geographic processes. We propose an HDA+HPC geocomputa-
tion architecture design that couples HDA (e.g., Spark)-based spatial
data handling and HPC-based parallel data modeling. Key techniques
for coupling HDA and HPC to bridge the two different software stacks
are reviewed and discussed.
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1 Introduction

High-end Data Analytics (HDA) [2] have introduced new infrastructure and
tools for data analytics that are now widely adopted in the science commu-
nity as enabling technologies for rapidly emerging data-intensive science [11].
The convergence of HDA and simulation-oriented high-performance computing
(HPC) presents tremendous opportunities for scientific advancement in comput-
ing applications and workflows by orchestrating simulations, experiments, data,
and learning-based knowledge. However, since HDA and HPC present separate
software ecosystems [2], fusing HDA and HPC, at both the application and
infrastructure levels, requires the dismantling of the boundaries of computing-
and data-intensive paradigms so that an integrated software and data ecosystem
can be built.

In Geographic Information Systems (GIS) environments [10], geocomputa-
tion [5] provides computing paradigms for interactive computing of geographic
data, processes, models, and maps. Geocomputation is data-centric. The compu-
tational scalability of a geocomputation workflow is directly related to the scale
of the GIS data layers, their resolution and extent, and the velocity of the geo-
located data streams to be processed. Scalable geocomputation solutions have
evolved from desktop computing to distributed computing paradigms that har-
ness service computing, HDA, or HPC. Because geocomputation is unique in high
user interactivity and low end-to-end latency requirements, performance will dra-
matically improve with the convergence of HDA and HPC. The application level
challenge, however, is to identify and eliminate computational bottlenecks that
arise along the entire geocomputation workflow. Indeed, poor scalability at any
of the workflow components is detrimental to the entire end-to-end pipeline.
Similar challenges have arisen in scalable database research [6].

Here, we study the convergence of HDA and HPC in geocomputation by
examining a typical large-scale geospatial application—continental flood inun-
dation mapping. We analyze the bottlenecks that arise when scaling the geo-
computation workflow from the regional level to the continental level.

2 A Geocomputation Use Case

The continental flood inundation mapping (CFIM) framework is an HPC frame-
work [18] that provides continental-level hydrologic analysis. At the national
level, the input datasets include the Digital Elevation Model (DEM) produced
by U.S. Geological Survey (USGS) 3DEP (the 3-D Elevation Program), the
NHDPlus hydrography dataset produced by USGS and the U.S. Environmen-
tal Protection Agency (EPA), and real-time water forecasts from the National
Water Model (NWM) at the National Oceanic and Atmospheric Administration
(NOAA). With these data, a hydrologic terrain raster, Height Above Nearest
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Drainage (HAND) (Fig. 1), and HAND-derived flood inundation measures are
computed for 331 river basins in the conterminous U.S. (CONUS) [37]).

Fig. 1. The HAND map 10 m resolution for CONUS, version 0.2.0, produced on March
01, 2020. Deep blue areas are prone to flood inundation. (Color figure online)

The CFIM computation features data-intensive vector and raster operations
for water feature querying, clipping, and reprojection, as well as data- and
computing-intensive hydrologic analysis of terrain pits, flow direction and accu-
mulation, and stream networks. The entire workflow consists of 20 steps. The
input DEM for CONUS 10 m resolution is a 718 GB raster grid of 180 billion
cells. When 1 m DEM becomes available, the size of the raster grid will increase
100 fold. The vector input has 2.7 million polygons (watershed boundaries) and
lines (flow lines). A higher resolution version would have 30 million vectors. In
addition, the NWM water forecast data consists of an hourly data stream for
the subsequent 18 h. The hydrologic analyses are parallelized using MPI [18]. In
addition, in-situ analytics of HAND and flood inundation, such as flood depth
maps, need to be delivered to web browsers and mobile apps. For instance, gen-
erating a HAND-sized map layer involves computing 230k map tiles for 8 zoom
levels or millions of contour vectors.

Currently, the CFIM HPC workflow is deployed on the Condo cluster at
the Compute and Data Environment for Science (CADES) at the Oak Ridge
National Laboratory (ORNL). The entire output 10 m resolution, including
HAND and derived raster and vector products, is about 3.7 TB. Each version of
the dataset [19,20] is registered and published on the Scalable Data Infrastruc-
ture for Science (SDIS) [33], housed at the Oak Ridge Leadership Computing
Facility (OLCF). Community access is provided via HTTP download as well as
the Globus bulk transfer service.
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3 Data and Computing Challenges

Fig. 2. The computing intensity map for the 331 HUC6 units on CONUS, derived from
the number of data cells that are involved in actual computing. This map guides the
allocation of HPC resources for the parallel computing of all the HUC6 units.

In the CFIM HPC workflow, a two-level parallelization strategy is applied to
systematically scale HAND computation to finer DEM resolutions and flowline
scale. The first level of the parallelization strategy spatially decomposes CONUS
into contiguous hydrologic units that follow the hierarchical Hydrologic Unit
Code (HUC) system. The delineation of the HUC boundary by hydrologists
minimizes interference between neighboring HUC units and creates a batch of
high-throughput computing jobs at each HUC level, as shown in Fig. 2. For each
job, a second-level parallelization via MPI is applied to a series of hydrologic
analysis functions that operates on the entire raster grid of each HUC unit.

The most recent HAND data was computed on the CADES Condo cluster
using RAM disk and burst buffer. On average, computing an HUC6 unit took half
an hour (with a standard deviation of 1,210 s). The MPI parallelization effectively
accelerated the performance of several key hydrologic analysis functions so that
they were no longer bottlenecks. However, new bottlenecks arose in the serial
GIS operations, particularly those that clip DEM and HAND rasters. These two
raster clipping functions required 454 s, on average, with a standard deviation
of 407 s, which amounted to 25% of the entire computing time.

This geocomputation scenario presents an interesting but challenging case
for further acceleration. The workflow does not read and write large geospatial
datasets only once, but applies frequent GIS and hydrologic analysis opera-
tions on them, generating copious intermediate data at runtime. Furthermore,
in order to enable first responders in extreme weather events (e.g., hurricanes),
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the computing time of HAND and inundation forecast information must be fur-
ther reduced. For example, to match the pace of real-time water forecasting, the
computing time for inundation forecasts must be reduced from hours to minutes.
In this quest, HPC alone may not be sufficiently effective for two reasons.

1. First, GIS libraries are often built as a geospatial extension to the common
data manipulation, query, and processing capabilities of general database and
data management systems. In the literature, HPC-based GIS development are
individual efforts. A more systematic approach that manages the complicated
interconnectedness of the individual components is needed. Given this base,
it is then a daunting task to develop a full-scale reconceptualization of the
entire stack of data handling libraries and GIS extensions using HPC.

2. Second, GIS functions often operate on multiple layers of vector and raster
data with different resolutions and spatial extent. Accordingly, computing a
GIS function requires frequent and dynamic data operations at multiple levels
of data granularity. This requirement is overly taxing on the distributed data
management model of HPC.

Data-intensive computing software infrastructure, such as Spark [36], provide
a desirable solution to the challenges that we have identified, provided that it
can be systematically integrated into an HPC workflow. As a scalable data ana-
lytic software infrastructure, Spark provides a rich set of data handling features
with distributed processing capabilities. Since most of the GIS operations in the
CFIM workflow are commutative and associative, it is possible to rewrite them
using the mapreduce paradigm. With the additional functional programming
support through Spark, the dependencies between the steps in the workflow can
be represented implicitly in the code. For example, at the infrastructure level,
Spark provides distributed data management and associated data parallelism
(through the Resilient Distributed Dataset (RDD) abstraction). Spark jobs are
executed as Directed Acyclic Graphs (DAG) that optimize the execution plan on
managed resources. Accordingly, it is not necessary to consider the task schedul-
ing problem at the infrastructure level. Furthermore, the lazy execution feature
in Spark allows a more performant workflow execution by reducing the inter-
mediate data footprints. Spark has been used for vector processing in geocom-
putation [4,13,14,32,34,35]. Spark connectors to high-dimensional arrays have
been developed [16,30]. Spark has also been utilized for large raster-based deep
learning inference [21].

4 Data-Driven Geocomputation on HDA+HPC

To harness HDA in a geocomputation workflow, we propose a general HDA+HPC
fusion model for geocomputation, shown in Fig. 3, that defines a fusion software
architecture to meet the end-to-end performance requirements in data-intensive
geospatial computing, such as those in CFIM. To effectively integrate HDA and
HPC, an application needs to manage software and data that enables flexible
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Fig. 3. A geocomputation design for CFIM on integrated HDA and HPC.

construction of computing elements in both HPC in a “move-data-to-code” fash-
ion and HDA in which code is packaged and moved to data nodes for computing
(i.e., “move-code-to-data”).

In this data-driven model, hydrology and GIS data are imported into a dis-
tributed data storage system, which are then spatially partitioned using regular
or adaptive 2D domain decomposition mechanism (e.g., adaptive quadtree) into
data blocks (e.g., partitioned RDDs in Spark) that are distributed on multiple
data nodes or a parallel file system. On a parallel file system, the data paral-
lelism is provided by the parallel IO capability of the system. A spatial index,
using the space filling curve, is built to link these partitions. This spatial index
then accelerates the spatial selection of the data blocks that participate in the
actual computing. The geodata streaming module handles data streams such as
the hourly water forecast as well as any data version update by using the spatial
data cube as runtime storage. The cube runs in a smaller sized distributed file
system (e.g., HDFS) or an in-memory database (e.g., Redis) on RAM disk or
burst buffer. The cube also serves the purpose of caching frequently accessed
datasets and maps from community users and applications. The use of the cube
in the online geospatial content mapping and delivery module provides impor-
tant and necessary performance for real-time GIS scenarios such as the CFIM
application.

Storing and indexing large geospatial datasets into data blocks provides basic
computing elements for both HDA and HPC algorithms. Because the data blocks
are loaded and processed on multiple computing nodes, we are able to execute
GIS operations that do not fit into the memory of a single machine. Spatial
knowledge on distributed data blocks can also be effectively leveraged to make
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runtime scheduling decisions that affect resource management and walltime bud-
get. In the context of Spark, we can use spatial characteristics to efficiently
configure CPU, memory, and storage resources for a given data processing job.

Transforming sequential or HPC-based GIS functions into data-parallel algo-
rithms is key to enabling geocomputation on data-intensive computing plat-
forms. This transformation requires algorithmic innovations for existing GIS
implementations. To scale GIS data processing in CFIM, a set of Spark-based
HDA functions for vector, raster, and vector-raster operations needs to be inte-
grated. For example, individual functions can be directly incorporated from open
source Spark-based geospatial data processing tools, such as GeoTrellis [14] and
RasterFrames [3]. However, GIS operations that can efficiently implement the
two-level parallelization in a single pass must be developed. In CFIM, it is pos-
sible to develop an efficient clipping operation on the entire CONUS DEM using
the boundary polygons of all the HUC units. These boundary polygons can be
checked against each data block’s spatial extent to determine which ones inter-
sect with this HUC unit. Multiple clipped raster segments at each data block can
then be returned as a key-value list, where the key is the HUC id. They can then
be grouped at the reshuffling stage into each HUC’s boundary. In this way, the
clipping operation for all HUC units can be computed as a Spark job. In CFIM,
70% of the operations can be converted to HDA operations. The chaining of
them in the workflow logic is captured in Spark as task DAG. This composition
and lazy execution of the DAG in Spark significantly improves a geocompu-
tational workflow in two ways. First, the functional programming pattern in
Spark provides a way to dynamically package and send the workflow code to
data nodes. Second, the delayed execution of all transformation operations on
the chain eliminates the need for storing intermediate results at each workflow
step. In HPC-based workflow solutions, these intermediate results are usually
written to and read from disk for large datasets.

We must also consider that HDA and its mapreduce programming paradigm
may not be well-suited for iterative processes that involve intensive numerical
operations, such as those in iterative modeling, simulation, and optimization. For
instance, the pit filling algorithm in CFIM operates on a large elevation raster
by flooding the entire terrain first and then iteratively letting water recede until
all the pits are filled. Such MPI parallelization does not need to be converted to
an HDA function unless a data-driven parallel algorithm is more efficient.

Note that the two-level parallelization strategy employed in the CFIM HPC
workflow is still effective in HDA+HPC. For an operation to be applied to all
of the HUC units, it can simply be invoked as an independent Spark job. Each
job’s DAG can then be executed in parallel, managed by Spark. With sufficient
resource allocation, the asynchronous actions in Spark with the FAIR scheduler
setting can be leveraged to process multiple HUC units simultaneously.

At the second level of parallelization where we run the workflow on an HUC
unit, we must determine how to invoke an HPC step in the Spark context. In
the literature, we evaluate three Spark–MPI connector solutions: Alchemist [8],
Spark+MPI [1] (also known as Spark MPI Adapter), and Spark–MPI [23,24].
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Table 1. Comparison of three Spark–MPI connectors.

There are two basic requirements to interoperate the two separate software stacks
of Spark and MPI. First, we need to launch an MPI executable in the Spark
JVM. Second, we must define a message and data exchange protocol between
them. Table 1 compares the working mechanisms of these solutions. Alchemist
is a broker solution that spawns a set of Alchemist server and worker processes
to bridge the communication and data exchange between Spark and MPI. Since
it uses a matrix format as a data exchange format between Spark’s RDD and
MPI’s data structure, serializing geospatial raster data in Alchemist is desirable.
The data exchange process in Spark–MPI can be efficient here since there is
no memory copy when contiguous arrays (such as a raster) are passed from
Spark to MPI through mpi4py. However, Spark–MPI leverages dynamic process
management features in specific MPI implementations. Portability is a potential
issue. Spark+MPI uses a file system as a data exchange media, which poses
limitations on the IO cost for frequent data exchange.

In general, the proposed geocomputation design captures three aspects
of HDA and HPC integration and interoperability. First, the aforementioned
Spark–MPI connection is an example of how to launch HPC code in HDA, which
is important for compute-intensive functions. Horovod in Spark [12] is another
example of machine learning computation using MPI within an HDA context.
Second, HDA empowers data gateway functionalities that face end users. In
geocomputation, HDA may accelerate geovisualization, spatial analytics, and
spatial data and map query, but the computing power on an online gateway
may be limited. When large-scale analytics, optimization, and simulation are
involved, middleware solutions are needed to launch HDA on HPC. For Spark,
Spark connectors are needed to conduct in-situ processing. This can be done
in two ways. First, a middleware (e.g., DASK) with application programming
interface (API) sends a Spark application to HPC batch schedulers, which then
instantiate a dynamic Spark cluster that application drivers connect to. Results
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are sent back to the gateway using the middleware. Alternatively, a Spark con-
nector can be built in an in-situ service such as ADIOS2 [15,17]). This connector
is responsible for connecting a Spark application on gateway to a Spark cluster
in HPC and handling the data transfer between them.

At the infrastructure level, the design is based on the assumption that an
HPC environment allows the sharing of the data repository between the gateway
cloud instance and the backend HPC resources. Otherwise, data transfer cost
must be considered. A hybrid infrastructure that supports data center and HPC
operations would be desirable for our geocomputation use case.

5 Preliminary Results

GIS operations create heterogeneous computing and data load as a result of
graphic and geometric calculations between shapes and geospatial data contained
in shapes. As a GIS operation is transformed into data-parallel implementation,
it is essential to understand the associated computational performance vari-
ants in order to systematically develop algorithmic strategies for data-parallel
geocomputation. We conducted computational experiments on a representative
vector-raster operation to measure the computational scalability and load bal-
ance of a Spark cluster for handling large raster data.

Clipping or subsetting is a common GIS operation for extracting a subset of
raster within the boundary of a polygon vector. A serial implementation often
creates a rectangle bounding box of the polygon as a clipping window. The poly-
gon is then rasterized to mask the subset of raster cells within the window. The
clipped raster is then output with the same spatial extent as the window. The
data parallelization of this operation consists of three distributed functions. The
tiling() function decomposes an input raster into tiles of the same dimensions
and registers all the tiles as a binary RDD indexed by their bounding box rect-
angle. The clipping() function applies the clipping on an input tile and supports
multi-polygon clipping. The output of the clipping function on a tile is a set of
subsets on the tile, indexed by shape id. The clipped tiles of the same shape id
are then aggregated into a single raster, which is output by the save() function.
In this implementation, the tiling and clipping are map functions that can be
chained for lazy execution. A groupByKey() call in Spark shuffles the clipped
tiles using unique shape identifiers. Data shuffling is memory- and IO-intensive.
The save() function is a parallel IO operation for saving multiple clipped rasters
simultaneously, each of which is named after their shape id. The clipping algo-
rithm is written using PySpark, the Python library of Spark.

Three test rasters of different sizes, large, medium, and small, are generated
from the national elevation dataset produced by the U.S. Geological Survey, as
shown in Fig. 4. The default tile size is 10812 × 10812. A Spark job takes an
input of all HUC6 unit shapes, whose boundary is colored in black in Fig. 4,
in a test raster and outputs a clipped raster for each of them. A Spark cluster
of 8 virtual working nodes is configured on a cloud instance with 128 physical
cores (AMD EPYC 7702 2 GHz), 1 TB memory, and 512 GB disk in the private
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Fig. 4. Study areas and raster data characteristics.

cloud at the Compute and Data Environment for Science (CADES) at ORNL.
The 1 TB memory is split into 512 GB RAMDISK as Spark worker disk cache
and 512 GB for the 8 Spark worker nodes. On each node, one Spark executor is
launched with 32 GB memory. The number of cores per executor is specified as
a runtime parameter. A Jupyter Spark driver connects to the Spark cluster to
run each test job.

(a) clipping stage (b) output stage

Fig. 5. Computational performance on the three test datasets.

Figure 5 shows the computational scalability of the map stage (Fig. 5a),
including the tiling and clipping, and the reduce stage of outputting (Fig. 5b).
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For all three datasets, doubling the number of cores used by each executor, from
1 to 4, reduced the stage time. As more cores were used, the data shuffling over-
head outweighs the benefit of additional cores. Weak scaling can also be seen
by looking at the dataset-cores combinations. The (small–8 cores, medium–16
cores, large–32 cores) combination shows a sublinear increase of overhead from
increased data shuffling cost in Spark, which is normal. Since the computing
complexity of the clipping algorithm is linear, this scaling performance is not
surprising. At the same time, Spark did not introduce significant overhead in
data and task management.

(a) task view (b) executor memory use

Fig. 6. Memory profile and load balance on the large dataset (303 tasks) using 8
executors, each using 32 GB memory and 8 cores.

Figure 6 shows the computational profile of the map stage of a run using 8
executors and 8 cores per executor to clip the 141 GB large dataset, which con-
tains 303 data blocks. Figure 6a depicts the time and memory usage for each of
the 303 tasks, ordered by the task time, i.e., the black solid line in the diagram.
The clipping time is heterogeneous among tasks, depending on how computing
intensive a shape intersection operation can be (tiles out of a shape’s bounding
box is calculated faster) and how many tile cells are intersected. The memory
usage is also heterogeneous. A time-consuming shape intersection operation may
result in a small number of data to be extracted, which explains why some tasks
took longer but consumed less memory. The four memory profiling measures
show the maximum memory usage, the number of clipped tile cells, the aver-
age runtime memory and disk cache consumption. Figure 6b, however, shows
that the computing and data load of such heterogeneous geocomputation are
evenly distributed among the eight executors. The explanation has two com-
ponents. First, RDD data blocks are evenly sized into tiles and distributed to
executors. On aggregation, the memory and cache usage among executors are
thus balanced. Second, small variations in time and runtime memory usage, i.e.,
shuffle spill memory, are caused by task heterogeneity but smoothed across tasks
running on an executor.
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Table 2. Turnaround clipping time (in seconds) by different clipping methods using
32 processor cores. The buffered method used a 40 MB memory buffer.

Clipping method Large dataset Medium dataset Small dataset

Buffered 2106 726 247

In-memory 729 389 113

Spark 282 166 89

The turnaround time of the Spark clipping implementation was also com-
pared with embarrassingly parallel processing of sequential clipping functions
using the open source GDAL [29] library. The existing clipping in CFIM uses a
40 MB memory buffer. Another configuration that uses only in-memory process-
ing was also tested. The Spark run used 8 executors with 32 GB memory and
4 cores per executor. Each scenario used 32 cores in total. Table 2 shows that
the Spark implementation clearly outperformed both batch processing methods
on each test dataset, mainly due to the RDD data parallelism and the resulting
load balance.

A CONUS clipping test was also conducted to obtain DEMs for each of
the 331 HUC6 units on the entire elevation dataset using 32 cores in total.
The map stage took 7.3 min to tile the input DEM and clip HUC6 shapes, and
generated 2829 data blocks, 170 GB in total. The total memory and cache usage
was approximately 475 GB. The output stage took 12 min to dump output rasters
to a Network File System (NFS) mount due to the limitation of local disk size.
The total turnaround time was 19.3 min for all 331 HUC6 units. Compared to
the average 4 min of single HUC6 clipping in the existing CFIM workflow, this is
a dramatic performance improvement, which can be further optimized by using
parallel file system storage.

In summary, these computational experiments demonstrate a desirable com-
puting and data management performance for the Spark environment. Task man-
agement, DAG execution, RDD management, and memory/disk spilling at run-
time did not introduce obvious overhead and interference with actual computing
and data handling.

6 Concluding Discussion

Science communities have been actively employing both data science and sci-
entific computing for science discovery and innovation. The fusion of HDA and
HPC becomes a prominent need. Here, we have explored the convergence of
HDA and HPC in a geocomputation scenario and studied the software com-
ponents that require technical innovations to accelerate the end-to-end perfor-
mance. Spark is a scalable data-intensive computing solution that has compre-
hensive virtualization, scheduling, and resource allocation strategies. It provides
an enabling software infrastructure for HDA in geocomputation. Integrating MPI
applications in Spark context is feasible.
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Our proposed design is applicable to general geocomputation applications—
transforming an HPC workflow into data-driven HDA+HPC hybrid solutions is
a promising path for resolving the computational bottlenecks introduced by GIS
software limitations and its associated data and computing challenges. Specific
spatial characteristics and geospatial workflow patterns may also be leveraged
for improving data logistics and resource management on cloud and HPC infras-
tructure. Raster operations such as local, focal, and zonal map algebra can be
effectively transformed into mapreduce functions. Vector operations can also be
transformed using distributed graph libraries, such as GraphX in Spark [9], and
vector decomposition techniques, such as vector tiles [25]. Sequential implemen-
tation can be directly incorporated into the map functions. Development and
computation of the reduce functions, however, are non-trivial and require fur-
ther computational studies. When multiple distributed datasets (RDDs) inter-
operate, frequent data shuffling may significantly increase computational cost.
Specific spatial indexing, caching, and partitioning schemes are needed to address
the challenges in runtime data management and task scheduling.

HPC has been a major accelerator for machine learning algorithms. As deep
learning turns to self-supervised learning to identify patterns and create knowl-
edge within a dataset itself, large-scale data transformation and augmenta-
tion solutions [28] become critical for enabling scalable learning from massive
datasets. GeoAI [21,22] is no exception. In general, as data and learning become
increasingly important in a scientific computing application, the fusion of HDA
and HPC will pave the way to a converged platform and programming interface
for domain application development. For instance, to make data interoperable,
there have been efforts to make columnized table and distributed datasets [7]
standard in data analytics and machine learning libraries for GPU [26,27], data-
intensive computing [31,36], and cluster computing to seamlessly share data in
different memory hierarchies.
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Abstract. The synchrotron and free electron laser light sources, large
scientific user facilities, are in the position to help solve some of the
most challenging and novel scientific questions facing the world, rang-
ing from the design of new materials to manipulate classical and quan-
tum information with high fidelity and ultra low power consumption, to
enabling systems for efficient energy storage, transportation, and conver-
sion that will drive the emerging economy based on renewable energy, to
understanding the structure and motion of protein molecules to enable
individualized medicine. These scientific opportunities will be addressed
by new measurement techniques, technological advances in detectors,
multi-modal data utilization, and advances in data analysis algorithms,
all of which are being driven to a new level of sophistication. Over the
next decade, it is estimated that the US light sources will generate in
the exabyte (EB) range of data, require tens to 1,000 PFLOPS of peak
on-demand computing resources, and utilize billions of core hours per
year. Scientific discovery on this scale will be enabled by data manage-
ment and workflow tools that integrate user facility instruments with
sufficient computing, networking, and storage resources, on-demand uti-
lization of super-computing environments to enable real-time data pro-
cessing, real-time data analysis capabilities to significantly reduce data
volumes and provide feedback during experiments to improve data qual-
ity and to drive the direction of ongoing measurements, the application of
advanced machine learning algorithms to make crucial experiment deci-
sions, and the integration of simulations and model-based approaches to
facilitate automated experiment design and steering of data collection.
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1 Introduction

The synchrotron and free electron laser (FEL) light sources, large scientific user
facilities, are in the position to help solve some of the most challenging and novel
scientific questions facing the world, ranging from the design of new materials to
manipulate classical and quantum information with high fidelity and ultra low
power consumption, to enabling systems for efficient energy storage, transporta-
tion, and conversion that will drive the emerging economy based on renewable
energy, to understanding the structure and motion of protein molecules to enable
individualized medicine.

These scientific opportunities will be addressed by new measurement tech-
niques, technological advances in detectors, multi-modal data utilization, and
advances in data analysis algorithms, all of which are being driven to a new level
of sophistication by existing and new light sources. These problems are complex,
requiring multiple techniques; novel and complex data analysis for multi-modal
data is needed. Increases in brightness and advances in detector data rates drive
the need for real-time analysis, by humans or by advanced machine learning
(ML) algorithms, to make crucial experiment decisions.

It is estimated that the US light sources will generate in the exabyte (EB)
range of data, require tens to 1, 000 PFLOPS of peak on-demand computing
resources, which will only be available at high-end computing facilities, and
utilize billions of core hours per year by 2028. Today, the US light sources serve
over 11, 000 users per year performing over 10, 000 experiments per year [1].
Unified solutions across the facilities are required in order to leverage efficiencies
of scale, and to provide facility users with the ability to easily and transparently
manipulate data across multiple facilities. Computing advances are required in
four main areas:

Data management and workflow tools that integrate scientific instruments
with computing and storage resources, for use during experiments, as well as
facile user access for post-experiment analysis.

Real-time data analysis capabilities to significantly reduce data volumes
and provide feedback during experiments to improve data quality and to
drive the direction of ongoing measurements; the application of advanced
machine learning algorithms and the integration of simulations and model-
based approaches will allow automated steering of data collection.

On-demand utilization of super-computing environments to enable real-time
data processing.

Data storage resources to house the continually increasing volumes of valuable
scientific data produced by the light sources.

The light source mission will only truly be realized by coupling the intrinsic
capabilities of the facilities with advanced data management and analysis. The
consequences of not delivering these developments would result in the following:
1) facilities would be forced to artificially reduce the readout rates of future
detectors, constraining the number of experiments that can be performed at
each light source and, hence, dramatically limiting the science output of each
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facility; 2) many experiments requiring high statistics would not be feasible; 3)
the ability of users to efficiently acquire, manage and analyze their data would be
severely limited, increasing the time to, and limiting the amount of, publication;
and 4) experiments requiring complex multi-modal data analysis would not be
possible, reducing the scientific impact of the facilities.

2 Scale of the Challenge

The US light sources have performed detailed analysis of their data management
and analysis needs. The facilities have worked together to cross-check and review
each other’s analysis for completeness and soundness. Overall, it is estimated that
the US light sources will generate data in the exabyte (EB) range per year within
the next decade, requiring tens to 1, 000 PFLOPS of peak on-demand computing
resources and billions of core hours to process (see Fig. 1 and Table 1). This
data will be generated at over 200 planned instruments performing over 15,000
experiments per year across the facilities.

Light source techniques will include ptychography, Bragg coherent diffrac-
tion imaging, x-ray photon correlation spectroscopy, and other coherent diffrac-
tion imaging modalities, serial crystallography, high-speed tomography, infrared
tomography, diffraction tomography, high-speed spectroscopy, high-speed x-ray
fluorescence mapping, high-speed 3D micro- and nano-diffraction, high-energy
diffraction microscopy, and other scattering mechanisms. The differences in data
generation rates across the facilities depend on the number, rate and resolu-
tion of the detectors at each instrument which in turn depend on factors like
the brightness of the source and the actual requirements of the experimental
technique specific to a particular instrument.

Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory.
Estimation for the ALS is based on the current and planned beamlines and
a 5,000 h per year cycle. Data and compute estimates were based on multiple
surveys and discussions with management and beamline staff. Included in the
discussions are current and future detectors for beamlines and upgrades in robots
and optics. Currently the ALS produces on the order of 2 PB of data a year.
The major contributors are currently the tomography and the ptychography
beamline. Upgrades in detectors and optics will increase the data rate over the
next few years. The ALS Upgrade will have the biggest impact on data rates
and compute requirements, increasing the data rate and compute requirements
of the facility [2].

Advanced Photon Source (APS) at Argonne National Laboratory. Based on
the beamline portfolio planned for the APS over the next decade [3,4], including
the planned APS Upgrade feature beamlines and enhancements, and based on
today’s understanding of the portfolio’s data requirements, the APS is able to
estimate its data generation rates per year. The APS generated these estimates
by conducting a survey of all beamlines and analyzed projected data rates in the
future considering technique, detector advances, experiment uptimes and allo-
cations, and the impact of increased flux and coherence from the upgraded APS



148 N. Schwarz et al.

accelerator and storage ring. Today the facility’s managed beamlines generate
approximately 4 PB of data annually. This will increase to approximately 7 PB
per year before the APS Upgrade storage ring is installed. Once normal oper-
ations resume in the APS Upgrade era, the aggregate data volume generated
by the facility per year will increase by two orders of magnitude compared to
today’s rates. In order to cope with this amount of data, by 2021 the APS will
require 4 PFLOPS of on-demand computing available, and 50 PFLOPS by 2028.

Linac Coherent Light Source (LCLS) at SLAC National Accelerator Labora-
tory. In 2021, when the LCLS-II source turns on, the repetition rate will increase
120 Hz to 1 MHz requiring an evolution of the present data system. Based on the
set of experiments currently planned for the next decade and based on today’s
understanding of the computing and data requirements, the computing demand
from LCLS-II can be estimated. Once LCLS-II is commissioned, roughly 85% of
user experiment time will require up to 1 PFLOPS of computing power (com-
pared to 0.05 PFLOPS today), with a subset requiring up to 60 PFLOPS. This
level of real-time computing is required to dynamically process the data and
provide on-the-fly analysis that is critical to the execution of the facility’s first
experiments portfolio. When LCLS-II-HE is commissioned, a conservative esti-
mate is that roughly 85% of experiments will require up to 5 PFLOPS, with peak
requirements in the EFLOPS range [5,6]. The actual fraction using large-scale
computing is likely to be even higher, as more areas adopt high-end workflows
such as coherent imaging.

National Synchrotron Light Source II (NSLS-II) at Brookhaven National Lab-
oratory. The NSLS-II [7,8] generated data production estimates by conducting
a survey of all 28 currently operating beamlines. Future projections were made
considering current data rates, emerging advances in techniques, detector tech-
nologies, experimental uptimes, and anticipated allocations. Given these con-
siderations, the NSLS-II is projected to be ideally collecting approximately 20
PBs of raw data per year by 2021, and up to 80–90 PBs of raw data by 2028.
To process this generated data will require on-demand computing power of 2.5
PFLOPS by 2021, and 45 PFLOPS by 2028. Note that these projections do not
take into account continued facility build-out, which could significantly increase
these already daunting estimates of storage capacity and required compute.

Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accel-
erator Laboratory. SSRL computing requirements will be significantly less than
LCLS, however, they are growing rapidly with commissioning of a new high-
brightness scattering beamline, upgrade of the detectors at the macromolecu-
lar crystallography beamline, and growth of the full-field imaging activities [9].
SSRL is also increasingly investing software development for rapid extraction
of knowledge from raw measurements. To fully meet the growing need SSRL is
beginning to explore other resources both for high power computing as well as
archival storage of data and data derived products. The SSRL estimates it will
collect approximately 1–2 PBs of raw data per year by 2021 requiring up to 1
PFLOPS of on-demand computing resources, and up to 10 PBs of raw data by
2028 requiring up to 10 PFLOPS of on-demand computing resources.
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(a) ALS (b) APS

(c) LCLS (d) NSLS-II

(e) SSRL (f) Total

Fig. 1. Estimated data generation rates per year at the US light sources. At the ALS
and APS, data generation will stop during 2025 and 2023, respectively, due to installa-
tions of new storage rings. Aggregate data generation across the US light sources will
approach the exabyte (EB) range per year by 2028.
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Table 1. Estimated PFLOPS of on-demand computing resources required by each of
the US light sources by 2021 and 2028.

Year Facility

ALS APS LCLS NSLS-II SSRL

2021 0.1 PFLOPS 4 PFLOPS 1–100 PFLOPS 2.5 PFLOPS 0.1–1 PFLOPS

2028 30 PFLOPS 50 PFLOPS 1–1,000 PFLOPS 45 PFLOPS 5–10 PFLOPS

3 A Transformative Data Architecture

The science missions at the US light sources, which will require significant com-
puting and data analysis capabilities over the next decade, will be significantly
enhanced by coupling the intrinsic capabilities of the light sources with advanced
data management, analysis, and networking capabilities. In the coming years,
the US light sources will experience a multiple order-of-magnitude increase in
data generation rates and demand for computing and storage resources. New
solutions must be developed to address this challenge.

The data architecture required needs to be a scalable and adaptive end-
to-end solution that covers the full lifecycle of data generated at light sources
and from simulations. This architecture should span the data workflow from
pre-experimental design stages, for example, using predictive simulations, to its
generation at scientific instruments within the light sources, to fast feedback and
steering implemented from the edge on detectors to high-end computing facili-
ties, through high-performance networks that connect the facilities, to algorithms
that facilitate online and post-experiment analysis, to sustainable data archiving
and user-friendly discoverability.

A multi-tiered architecture with varying types and scales of computing, net-
working, and storage capabilities is required to bridge scientific instruments and
computing facilities. Fast feedback and reduction for data quality verification
and experiment steering occurs closest to the scientific instrument when local
computing resources are sufficient, and on high-end computing resources when
required. In addition to processing data after experiments have concluded, high-
end computing facilities will process larger online data analysis tasks on-demand
and in real-time, possibly requiring a significant fraction of available computing
resources.

Connecting the light sources and computing facilities requires a robust, fea-
ture rich, high-performance network that provides high throughput as well as
caching, computation, and traffic engineering services. In order to seamlessly
transfer or stream data, facilities need low-latency high-performance networks
with bandwidth in the range of multiple terabits per second.

By 2021 the light sources will generate on the order of a few hundred peta-
bytes of data per year; over the next decade this will increase to the exabyte
range. Distributed data storage infrastructure is needed to store and archive the
wealth of experiment data for publication, dissemination, and future discover-
ability.
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Advanced algorithms, including machine learning, will play a critical role in
this architecture. Within the light sources, these algorithms will provide auto-
mated setup of the source and sample alignment, intelligent data collection,
quality verification, and data reduction. Combining these algorithms with theory,
modeling, and simulations will drive experiment design and automated steering.

A broad suite of workflow tools is required so that instrument users and facil-
ity scientists can develop and customize data workflows for the over 200 instru-
ments, each utilizing dozens of unique workflows, and over 15,000 experimental
starts per year, that will exist at the US light sources in the coming decade.
Shared orchestration tools and data transport mechanisms are required to inte-
grate light source instruments with computing and storage resources. These com-
mon tools must be designed to enable interoperability between instruments and
computing. A uniform authentication and authorization mechanism, as well as
a shared allocation system, will be required to enable ease of access to data and
analysis across facilities.

A common library of shared, open-source data processing, reduction, analy-
sis, and visualization software should serve the overlapping high-priority needs
of the light sources. These tools must scale as needed to operate on current and
future high-end computing systems.

An appropriately resourced, diverse, and inclusive workforce is critical to
realizing the data architecture described above.

4 The Role of AI/ML

The application and development of advanced artificial intelligence (AI) method-
ologies is critical to the current and future success of light sources. The light
sources require AI developments that will have a transformative impact on the
science conducted by its users in support of its mission focusing on autonomous
experiments, novel data processing, optimization, and robustness.

Autonomous Experiments to Unlock New Scientific Knowledge. The experimen-
tal process targeted at the development and synthesis of new materials, for
example, will rely on feedback that must be obtained on timescales too short
for humans to react in order to steer ongoing experiments. These experiments
require the combination and interpretation of large amounts of experimentally
acquired data with knowledge from simulations and models. AI/ML will be key
to realizing autonomous experiments.

Novel Data Processing. Data generation rates at the light sources are expected
to increase in terms of both its complexity, due to multi-modal data utilization,
and in size, by multiple orders-of-magnitude, over the next decade, especially in
the coherence diffraction imaging techniques enabled by upgraded sources. This
is more data than can be analyzed by conventional processes. AI/ML combined
with edge computing will be required to process this anticipated deluge of data.
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Fig. 2. High-level prototype architecture for common experiment control, data pro-
cessing and analysis, and visualization tools at the US light sources.

Optimization of Complex Instruments and Accelerators. The optimization of
instrumentation and of the facility will become crucial to the productivity of
the light sources as complexity increases. Optimization using AI/ML will enable
automated beamline alignment, including samples and optics, coupling experi-
mental instrument feedback with accelerator status, and more efficient domain
specific data acquisition protocols.

Improve Resilience and Robust Operations of Upgraded Accelerator Complexes.
Today, accelerator operation is based on tens of thousands of measurements
taken at intervals from seconds to minute. Upgraded facilities will experience a
multiple order-of-magnitude increase in the future. AI can enable the prediction
of anomalies and failure modes, maintain proper orbit motion, and extend beam
lifetime.

5 First Steps

The light sources are beginning to take the first steps toward achieving this
overall transformative architecture by developing common data processing tools
across facilities following the high-level design in Fig. 2. The Bluesky experi-
ment control system [10,11] serves as the underlying coordination system that
interacts with scientific instruments and detectors via low-level control systems,
including the Experimental Physics and Industrial Control System (EPICS) [12]
and LabView (see Fig. 3). The DataBroker interface in Bluesky facilitates access
to data and metadata acquired during data acquisition.
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Fig. 3. Diagram to illustrate the software components, interfaces and data flow for an
experiment when using Bluesky. The green labels indicate the names of the Python
libraries that are part of the Bluesky Project. All communication with hardware occurs
through an orchestration engine (Run Engine) that captures readings and metadata
and handles any errors safely. Data is organized by Bluesky in “documents” that
are dispatched to any number of consumers, such as a database, file writers or live
data processing and visualization pipelines. After the experiment, the data may be
retrieved either as standard data structures suitable for use with existing scientific
Python libraries or suitable for piping back through the same pipelines that were used
on the live data.(Color figure online)

Xi-CAM [13] serves as a data visualization and orchestration tool. Custom
plug-ins are developed for techniques such as tomography and x-ray photon
correlation spectroscopy that provide domain and technique specific views of
data (see Fig. 4). Common data processing tools, including TomoPy [14] for
tomographic reconstructions and XPCS-Eigen [15] for x-ray photon correlation
spectroscopy auto-correlations, interface with Xi-CAM.
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Fig. 4. Xi-CAM graphical user interface and the x-ray photon correlation spectroscopy
plug-in displaying data acquired at the APS 8-ID-I instrument using bluesky and pro-
cessed with XPCS-Eigen.

6 Future Directions

The planned improvements to the sources and instruments at existing and new
light source facilities necessitates the development of this transformative data
architecture in order to fully realize the light source science mission. Collabo-
rative and consolidated activities are required to begin developing a common
end-to-end data management solution that bridges the light sources and com-
puting and networking facilities. To achieve this, the following efforts are needed
that will align the path toward a transformative data architecture:

On-Demand, Real-Time Computing Access. A research and development effort
to enable scalable, on-demand, and real-time computing access at computing
facilities. This effort should include streaming data directly from light source
instruments, as well as traditional data transport mechanisms. This capability
is crucial to achieve fast feedback and experiment steering. Research and deploy-
ment of advanced high-performance network services to support data placement
and data streaming are required.

Data Processing Software. A shared suite of user-friendly data processing, reduc-
tion, analysis, and visualization software that meets the highest priority needs
of the light source user community should be developed. These shared software
tools should sufficiently scale to handle the anticipated data rates and computing
needs of the light sources and operate on current and future high-end computing
systems.
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Algorithms and AI/ML. Research and development of data analysis capabilities
that utilize advanced algorithms, mathematics, and AI/ML for reduction and
processing of data from high-priority light source techniques, such as ptychogra-
phy, x-ray photon correlation spectroscopy, and serial femtosecond x-ray crystal-
lography, for rare event detection to enable scientific exploration, and instrument
optimization and robustness, as new and upgraded light sources come online over
the next few years.

Data Storage. A sustainable distributed data storage infrastructure sufficient to
store the wealth of valuable scientific data generated at the light sources. To com-
plement this infrastructure a distributed suite of data cataloging, discoverability,
and dissemination tools is required, along with appropriate policies.

Policy Implementation. Computing, storage, and networking facilities should cal-
ibrate access and allocation policies in order to meet the upcoming computing
needs of the light sources and other scientific user facilities and the desired data
management architecture, support for on-demand and real-time tasks beyond
batch scheduling, an allocation mechanism for data storage, and allocation mech-
anisms for access that are uniform and portable. A common authentication and
authorization mechanism should be developed and implemented across the light
sources and computing, storage, and networking facilities.

Workforce. A critical workforce development strategy should be created to ensure
the light sources and the computing facilities and research programs have access
to necessary skill sets.
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Abstract. One of the primary challenges facing scientists is extracting
understanding from the large amounts of data produced by simulations,
experiments, and observational facilities. The use of data across the entire
lifetime ranging from real-time to post-hoc analysis is complex and var-
ied, typically requiring a collaborative effort across multiple teams of
scientists. Over time, three sets of tools have emerged: one set for analy-
sis, another for visualization, and a final set for orchestrating the tasks.
This trifurcated tool set often results in the manual assembly of analy-
sis and visualization workflows, which are one-off solutions that are often
fragile and difficult to generalize. To address these challenges, we propose
a serviced-based paradigm and a set of abstractions to guide its design.
These abstractions allow for the creation of services that can access and
interpret data, and enable interoperability for intelligent scheduling of
workflow systems. This work results from a codesign process over analy-
sis, visualization, and workflow tools to provide the flexibility required for
production use. Finally, this paper describes a forward-looking research
and development plan that centers on the concept of visualization and
analysis technology as reusable services, and also describes several real-
world use cases that implement these concepts.
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1 Introduction

Gaining insight from large scientific data sets, while challenging, has tradition-
ally been tractable because the process has generally been well understood. This
tractability is the result of three key properties: low barrier to entry, collabo-
ration, and standardization. These traditional approaches had a low barrier to
entry as the data was written to permanent storage in a standardized way and
could easily be shared with others. This in turn enabled rich collaboration among
domain, computational and visualization scientists. Once data is stored on disk,
each stakeholder can access the data at their convenience, and do so with ded-
icated visualization and analysis software, custom scripts, etc., which are easily
shared. Exploration of data often takes place using GUI-based tools that are well
supported and easy to learn. Further, the standardization is helpful on a variety
of fronts, not only in how data is stored and represented, but also in how data is
accessed and processed. The benefit of standardization is in code reuse, enabling
the efforts of a community of software developers to increase their impact. This
is particularly needed for visualization and analysis software, since such software
often contains a large number of algorithms and data format readers.

The three beneficial properties of low barrier to entry, collaboration, and stan-
dardization are rapidly becoming infeasible because of two important trends in
high-performance computing: Big Data and hardware complexity. With respect
to Big Data, scientific data has been dramatically affected by the three V’s—
volume, velocity, and variety. With respect to hardware complexity, modern
computers increasingly have heterogeneous hardware, deep memory hierarchies,
and increased costs for data movement and access. As a result of the volume and
velocity components of the Big Data trend, along with the increased costs of data
movement and access, saving all data to disk is no longer possible. Instead, data
will need to be visualized and analyzed while it is being generated, i.e., in situ
processing. But in situ processing presents challenges to the three beneficial prop-
erties. In particular, standardization is more difficult since data is being delivered
in a variety of ways and locations. Rather than files in known file formats stored
to permanent storage, data may come from a computational simulation over a
socket, from a remote experimental resource, or it may be located in the mem-
ory of a GPU accelerator, just to name a few. Further, the barrier to entry is
often substantially higher, requiring highly-experienced, “ninja” programmers
to incorporate visualization and analysis algorithms. This limits collaboration,
since it is difficult to get visualization and analysis routines applied, leaving the
task to only those that can wrangle complex software.

Scientific campaigns have dealt with these challenges by moving toward auto-
mated workflows to control the complexities with running simulations. These
systems are enabled by middleware systems that provide efficient layers between
applications and systems, and by emerging workflow systems that orchestrate
executables and the movement of data. That said, visualization and analysis has
struggled to adapt to this workflow approach. Despite recent support for in situ
processing and heterogeneous architectures, the fundamental “glue” is lacking
for bringing together the disparate tools and libraries for a scientific software
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campaign. Best efforts often are targeted out of necessity at a narrow range of
use cases and are often brittle and difficult to reuse at a later date or generalize
for usage in other situations. These problems make the practical and widespread
use of these tools difficult, further leading to fragmented approaches as every
scientific team creates its own customized approach. Finally, while the results to
date have been lacking, they have also taken great expertise to achieve. Funda-
mentally, we feel that this mismatch—great expertise to achieve poor results—
indicates a failure in the underlying approach.

In this paper, we advocate for a new model for visualization and analysis of
scientific data to address these challenges that is based on following the “aaS”
paradigm—as a service. This model is focused on identifying abstractions for
points of interaction between visualization, middleware, and workflow systems.
The abstractions provide clear interfaces between these three sub-components
in a scientific campaign and makes it easier for them to work together. These
abstractions will make it much easier to move visualization computation to the
data, which is a reversal from the previous model, in which it was easier to move
the data. This in turn restores the possibility of low barrier to entry, collabora-
tion, and standardization, by making visualization workflows more user-friendly
and intuitive and enabling them to become more schedulable, lightweight, and
pervasive. Overall, we feel the entire ecosystem will be more cost effective,
portable, efficient, and intuitive—a return to the benefits our community has
traditionally enjoyed.

An important benefit of an aaS approach is that it enables each participant
to focus on their own area of expertise. For application scientists, visualization
should be about declarative intentions. For example, isocontours of primary vari-
ables are needed in near-real-time (NRT) to track the progress of a simulation,
and high-quality renderings of vorticity magnitude and particle traces around
regions of interest are needed after the campaign is completed. Visualization
experts should focus on algorithms that provide the necessary functionality, per-
form well on computing platforms, and operate on a variety of data types. Mid-
dleware experts should focus on providing efficient I/O and data movement capa-
bilities between data producers and data consumers. Workflow experts should
focus on taking scientific intentions and orchestrating the movement of data
from producers among all the data consumers to provide the desired results. By
providing clear interfaces (i.e., abstractions) between these pieces, it is possible
to rethink how analysis and visualization at scale are performed.

The remainder of this paper is organized around the discussion of a set of
abstractions (Fig. 3) we have identified that enable Visualization As A Service
(VAAS). These abstractions are targeted at addressing the barriers to extracting
insight from large scientific data by providing a service based paradigm, and pro-
vide a road map for research and development that can take full advantage of the
immense power of modern computing systems. At the same time, these abstrac-
tions lower the barriers to entry for users giving them the flexibility to build and
connect services together in arbitrary ways. In Sect. 2 we provide two motivating
examples that helped guide our thinking in the identification of these abstrac-
tions, and Sect. 3 discusses related work and complementary efforts towards these
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goals. Section 4 describes the two tiers of abstractions in detail. The base tier
of abstractions provides the foundation necessary for creating visualization ser-
vices. These abstractions include data access, data interpretation, and ser-
vice composition/workflow abstractions. Together, these three abstractions
allow for the creation of basic visualization services since there is a way to access
the data, a way to interpret the data, and a workflow system that understands
how to schedule the visualization services in conjunction with the simulation
or experiment. The second tier of abstractions is built on top of the base tier
and is concerned with making visualization services more powerful, easier to use
and schedule, and more intelligent. Specifically, we identify portable perfor-
mance, performance modeling, and declarative invocation as this higher
tier. Section 5 discusses how our prior research and experience with application
engagements have guided our thinking and the development of these abstrac-
tions. We show how these abstractions have proven useful and describe their
impact on scientific applications. Finally, Sect. 6 concludes with a discussion on
how further research and development in these abstractions can improve the
process of analysis and visualization in scientific campaigns.

2 Motivating Workflows

Creating and successfully executing large, complex workflows is a challenging
task. These workflows must be extensively vetted before execution to ensure that
the necessary results can be captured in a timely manner that efficiently uses
computing and/or experimental facilities. This vetting process often requires
substantial time from teams of experts, including application scientists, com-
puter scientists, mathematicians, and data analysts. The efforts of these individ-
uals create unique and complicated workflows with a myriad of different analysis
and visualization needs [23]. This section describes two different recent visual-
ization and analysis workflows with which our group has been involved and
highlights the interesting aspects and complexities of both efforts. The first use
case involves work with a simulation, and the second is with an experiment.

2.1 Fusion Simulation Workflow

The simulation use case comes from the high-fidelity whole device modeling
(WDM) of magnetically confined fusion plasmas. WDM is among the most com-
putationally demanding and scientifically challenging simulation projects that
exists within the US Department of Energy (DOE). The 10 year goal of WDM
is to have a complete and comprehensive application that will include all the
important physics components required to simulate a full toroidal discharge in
a tokamak fusion reactor.

This workflow primarily comprises two different fusion codes, XGC and
GENE, which must be coupled together. Coupling these codes enables the sim-
ulation to advance further in a shorter amount of time while retaining more
accuracy than either code can achieve on its own. XGC is a particle-in-cell code
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Fig. 1. Workflow for coupled physics simulation. Data from the core and edge coupled
physics codes are sent to services to perform analysis and visualization. The resulting
images from the rendering services are saved to disk.

optimized for treating the edge plasma, and GENE is a continuum code opti-
mized for the core of the fusion reactor. In the WDM workflow, ADIOS is used to
save checkpoint/restart files and offloads variables for in situ analysis and visu-
alization [12]. For in-memory data exchange, ADIOS is used to couple the core
and edge simulations [13]. Figure 1 shows the various components of the WDM
workflow. The workflow is a complex process that requires sending data to and
from multiple separate executables to advance the physics while also visualizing
important variables.

2.2 KSTAR

The experiment analysis workflow that comes from fusion experiments is
designed to validate and refine simulations that model complex physical pro-
cesses in the fusion reactor and to test and validate hypotheses. Recent advances
in sensors and imaging systems, such as sub-microsecond data acquisition capa-
bilities and extremely fast 2D/3D imaging, allow researchers to capture very
large volumes of data at high spatial and temporal resolution for monitoring and
diagnostic purposes and post-experiment analyses. Alone, a 2D spatial imaging
system, called Electron Cyclotron Emission Imaging, at the Korean Supercon-
ducting Tokamak Advanced Research (KSTAR) can capture 10 GB of image
data per 10 second shot [51].

A system using ADIOS was developed for KSTAR to support various data
challenges by executing remote experimental data processing workflows in fusion
science. This system is one of the drivers for the development of the DataMan
engine to support science workflows execution over the wide-area network for
NRT streaming of experiment data in remote computing resource facilities.
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Fig. 2. The KSTAR worfklow showing the data traveling back and forth from KSTAR
and the USA. Each box in the workflow is composed of multiple different visualization
services.

An example of a KSTAR workflow is shown in Fig. 2. This workflow is a mul-
tilevel workflow in that each box comprises one or more sub-workflows. One main
goal is to stream online fusion experiment data from KSTAR in Korea to a com-
puting facility in the United States to perform various computationally intensive
analyses, such as instability prediction and disruption simulation. Although our
previous effort [11] focused on building remote workflows with data indexing, we
are currently composing the KSTAR workflow with DataMan. In this workflow,
ADIOS provides a remote coupling service to move raw observational data as
streams from Korea to the USA. Once data streams arrives in a US computing
facility, a set of analysis and visualization workflows will be launched to perform
denoising, segmentation, feature detection, and selection to detect any instabili-
ties. Visualization results can then be delivered back to Korea for designing the
upcoming shots.

3 On the Shoulders of Giants

The abstractions introduced in Sect. 1 were identified through a careful analysis
of our experiences working with application scientists and from the body of pub-
lished literature. This section describes the systems and concepts that guide our
thoughts.

3.1 Tier 1 Related Works

The tier 1 abstractions provide a foundation for data access, data interpretation,
and the ability to compose and schedule visualization tasks.

Traditionally, visualization has been performed as a post-processing task,
which worked well until the petascale era when it broke down due to the limited
I/O bandwith in supercomputers [9,10,49]. In situ processing has been success-
fully used to avoid this I/O bottleneck, resulting in a rich body of research and
production tools. Recent works [4,6] provide surveys of the state-of-the-art in
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situ visualization. Middleware libraries have been developed to provide scalable
I/O. Systems such as ADIOS [31] and HDF5 [47] provide a publish/subscribe
model that enables flexible data access abstraction.

In situ processing is a rich space that consists of three predominant forms.
In-line in situ is a synchronous method in which the data producer and visual-
ization run concurrently on the same resource. Tools such as VisIt Libsim [48]
and ParaView Catalyst [3,17] support this model. In-transit in situ is an asyn-
chronous method in which the data producer and visualization run on separate
resources. Tools such as EPIC [16], Freeprocessing [18], and ICARUS [45] sup-
port this model. Hybrid in situ methods provide the flexibility of supporting
both synchronous and asynchronous processing. Tools such as Damaris/Viz [14]
and SENSEI [4] provide interfaces to use VisIt Libsim and ParaView Cata-
lyst to support a hybrid model. Ascent [28] is a lightweight in situ framework
that also provides hybrid model support. Both SENSEI and Ascent use the
ADIOS [39] middleware library, which provides a publish/subscribe view of data
access using several different data transport mechanisms, including files, in-line,
and in-transit.

Data interpretation has been largely focused on data models and schemas.
Ascent uses the rich capabilities of BluePrint [29], whereas SENSEI, VisIt Lib-
Sim, and ParaView Catalyst rely on the Visualization Toolkit (VTK) data
model, which is specifically targeted at the needs of visualization. VizSchema [46]
provides an interpretation layer on top of ADIOS for streaming and file-based
data. The Adaptable Data Interface for Services [2] is a follow-on work to
VizSchema that provides more flexibility and better support for streaming data.

Many of the existing production in situ tools are monolithic and difficult
to decompose for scheduling by workflow systems. Furthermore, they require
instrumentation into application codes (e.g., VisIt Libsim, ParaView Catalyst,
Ascent, SENSEI, Damaris, Freeprocessing) or a shared message passing inter-
face communicator (e.g., EPIC), whereas other require coupling with files (e.g.,
ICARUS).

Using lightweight visualization tasks in addition to production tools has been
explored in [21,43], as described in part in Sect. 2.

3.2 Tier 2 Related Works

The tier 2 abstractions are focused on providing flexibility, power, and intel-
ligence in visualization tasks. These build on a substantial body of work by
others as well as ourselves; we focus in the following discussion mostly on the
connections of the abstractions to our previous work.

The importance of in situ processing highlighted the need for more flexible
data models for in-memory layouts and portability across heterogeneous archi-
tectures. Early efforts such as the Extreme Scale Analysis and Visualization
Library [36], Dax Toolkit [37], and Piston [32] looked at different aspects of these
challenges and were combined into a single toolkit, VTK-m [38]. These efforts
have demonstrated the benefits of flexible data models [35] and the portable
algorithm performance across a wide variety of architectures [44,50].
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A declarative view of visualization has been explored through understanding
the performance of different algorithm implementations under different work-
loads, levels of concurrency, and architectures. Particle-tracing algorithms, which
are useful methods for understanding flow, can be implemented in several differ-
ent ways [42], and performance is dependent on factors such as workload, concur-
rency, and architecture [7,8,20,41]. Similar work was also done to understand the
performance of different types of rendering algorithms for in situ settings [27],
and the power-performance tradeoffs for visualization [26].

Models for performance and cost prediction can be useful to inform schedul-
ing and placement by workflow systems. Performance and cost models for dif-
ferent in situ visualization methods are described in [24,25,33,34], analysis of
costs for in situ analysis algorithms are described in [40], and a model for in situ
rendering is provided in [27].

4 Visualization as a Service Abstractions

Moving away from monolithic or aggregated solutions would help address the
challenges of visualization in an era of large streaming data and complex com-
puting environments. The ability to break visualization and analysis tasks into
pieces that can be deployed, managed, and automated by a workflow system
is powerful and aligns well with the principles of service-oriented architectures
(SOA) [30].

At a high level, SOA is characterized by a self-contained black box that
provides a well-defined set of features for users. SOA takes several forms, includ-
ing infrastructure as a service (IaaS)[1], software as a service (SaaS)[19], and
microservices [15]. Cloud computing is the most common example of IaaS in
which costs are controlled by dynamically allocating resources in response to
changing user requirements. SaaS is characterized by the delivery of a capability
using a thin client or ergonomic application programming interface. Scalability
for SaaS is provided by different types of back-end implementations that are
appropriately sized. Microservices are small, independently deployable executa-
bles with a distinct goal. Groups of microservices can be orchestrated to perform
more complex tasks.

We envision that visualization as a service (VaaS) will apply the principles of
the SOA paradigm to computational simulations and experiments. Importantly,
we think that VaaS should provide a clear separation between the operations
that scientists want to apply to data and the implementation details required
to perform it. This will allow application scientists to concentrate on under-
standing their simulations. VaaS draws from several different aspects of SOA
implementations.

– Similar to IaaS, visualization and analysis operations must be provisioned on
an appropriate amount of resource. Too much or too little of the wrong kind
of resource can result in inefficiency.
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– Similar to SaaS, abstractions for access to data and execution must be pro-
vided so that application scientists can focus on the operations to be per-
formed, and computer scientists can focus on implementation and scalability.

– Similar to microservices, VaaS would support a set of modular analysis and
visualization operations that can be chained together to form complex scien-
tific workflows.

4.1 Visualization as a Service Abstractions

Realization of an SOA to visualize large scientific data will require coordination
and codesign with application scientists and disciplines within the computer sci-
ence community. This section describes a set of abstractions that are targeted at
guiding the framework design that follows an SOA philosophy. These abstrac-
tions serve as guiding principles for the design of visualization frameworks that
can function in a service-based way. They have resulted from our work with appli-
cation scientists to do visualization and from collaborations with other computer
scientists in leveraging complimentary technologies.

From the perspective of an application scientist, our vision is that a service-
based visualization framework would work as follows. A team of scientists plans
a scientific campaign. They specify a set of visualization tasks in a declarative
way. For example, isocontours of high vorticity around an inlet are required in
NRT (e.g., every minute) to monitor the simulation. Volume renderings of pres-
sure from three different views are necessary after the simulation has completed.
These intentions would then be turned into a sequence of analysis and visualiza-
tion tasks that would be input into an automated workflow system and run as
services on the computing resources to provide the results. The abstractions and
their relationships are shown in Fig. 3. These abstractions describe the points of
interaction between the tasks and their sequencing that are needed to produce
the results. The emphasis is on providing interfaces appropriate for the intended
users. Declarative intentions separate the action from the particular algorithms
selected and the resources used. Data models and schemas provide information
to workflow systems about how tasks can be composed and connected. Perfor-
mance models for algorithms can inform required resources and optimize the
placement of tasks onto resources.

The remainder of this section describes the abstractions for VaaS in a bottom-
up approach. We begin with a first tier of abstractions that provides a foundation
for VaaS. These foundational abstractions address data access across memory
hierarchies, service composition for workflow systems, and methods for interpre-
tation of data between services. We then discuss a second tier of abstractions
that builds on the first tier and provides improved flexibility, efficiency, and intel-
ligence to services. These tier 2 abstractions help map visualization intentions
onto efficiently executing service on the underlying computing resources.

4.2 Tier 1 Abstractions

The foundation required to support visualization requires three basic abstractions.
First, a service must be able to access data from a variety of different sources.
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Data Access

Tier 2

Tier 1

Fig. 3. Chart denoting the two tiers of abstractions that we have identified, their
relationships to each other, and proximity to the user.

Second, automated workflow systems must be able to dynamically compose ser-
vices into sequences and schedule and execute across a variety of resources. Finally,
data models, schemas, and ontologies are needed so that workflow systems know
how to connect and schedule services and so that services know how to operate on
the incoming data.

Work in the first two abstractions has a heavy emphasis on disciplines outside
the visualization community. The realization of VaaS will require codesign with
these communities so that the pieces work together smoothly. The visualization
and analysis community must create and codesign the third abstraction together
with the other communities and application scientists so that things work well
together. Each of the three abstractions are discussed in more detail in the
following sections.

Data Access Abstraction: Visualization services need access to data that
come from a variety of sources, including on-node RAM, NVRAM, different
nodes in a system, nodes in a different system, and files. Furthermore, the same
service might need to consume data from different sources under different cir-
cumstances (e.g., from shared memory for an in situ setting, or from disk in a
post-processing setting). Supporting all of these data access modes directly in
the visualization service is inefficient. Middleware systems such as ADIOS [31]
and HDF5 [47] provide a publish/subscribe interface to data that hides the com-
plexity of reading and writing data. The reliance on a data access abstraction
allows the visualization community to focus on functionality and performance
and the middleware community to focus on providing efficient data access. This
also enables greater portability and reuse on different systems and the complex
and evolving memory hierarchy.
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Service Composition/Workflow Abstraction: Analysis and visualization
tasks often consist of a sequence of composed subtasks. For example, rendering
an isocontour might involve three steps: (1) recentering a cell-centered variable to
the nodes, (2) computing the isocontour, and (3) rendering the geometry. These
subtasks might have better performance if the variable recenter and isocontour
are performed in situ, and the results are then sent to a set of visualization
resources for rendering. In previous work, we have seen the utility of taking
these “micro-workflows” and forming integrated in situ visualization libraries
(e.g., Catalyst [3], libSim [48]) that can be hard-coded into an application code,
as well as interface solutions such as SENSEI [4,5] that allow the workflow
mechanics to be embedded into the code while leaving the choice of the in situ
visualization or analytics to a run time configuration. However, to fully realize
the VaaS design opportunities, we must go further in codesigning the size and
scope of the visualization components with high-performance in situ workflow
engines. When coupled with the other design abstractions in the VaaS system,
this can enable an autonomously adapting visualization environment that can
maximize efficiency, latency, or the constraint that is most relevant for that
particular scientist’s research campaign. One approach we have been exploring
is to tie into the extended publish/subscribe semantics for ADIOS, as described
in [22], so that VaaS provides context for “editing” and “managing” the data as
it is published.

Data Interpretation Abstraction: Data interpretation is required for the
workflow system to understand how services can be connected and for individ-
ual services to understand the data that is accessed. This information makes
it possible for the workflow system to know what must be done and how an
intention can be sequenced into a series of services that are chained together
and placed onto resources. Data interpretation makes it possible to know which
services can be connected together and ensures that inputs are paired with the
appropriate outputs; in other literature this is often referred to schemas, data
model matching, or ontologies. This includes information about the execution
behavior of the service (e.g., the service requires collective communication and
so it would run more efficiently on a smaller resource).

Once a service has access to a data stream, ontologies for interpretation and
mapping to a data model are needed so that the ontologies can be used by the
visualization routines. Ontologies provide the semantics for data, intentions, and
operations. These provide information about a service (e.g., a service supports
CPU and GPU execution, a service is compute bound or requires collective com-
munication). Ontologies also map the intentions between different data sources
(e.g., the variable “pressure” is the same as “press”). Data models include infor-
mation about the types of meshes in the data (e.g., uniform grid, rectilinear
grid, explicit), the fields that exist on the mesh and their associations (e.g.,
node, cell, edge), and other labels associated with the data. This allows a service
to properly process the data. This information also enables the service to per-
form data conversions where needed or use optimized algorithms when possible
(e.g., algorithms for structured data).



168 D. Pugmire et al.

4.3 Tier 2 Abstractions

The abstractions in this section build on the aforementioned foundation and
provide the ability to optimize functionality and performance and increase flex-
ibility.

Portability Abstraction: Modern computing systems provide rich heteroge-
neous resources. Furthermore, executables in a workflow can be mapped onto
these resources in several ways. A visualization service must be able to run on
a variety of different hardware devices. For example, the same visualization ser-
vice might need to run on all core types in a heterogeneous compute node or be
restricted to use only a subset of a particular core type. Visualization services
must run on computing systems that have differing architectures and hardware.
These complications increase when considering edge computing. This relates to
the aforementioned service composition abstraction by providing the workflow
system with the flexibility to place services on available resources and across
different types of systems. Service portability provides the workflow system with
additional options to use for optimizing a scientific campaign.

Performance Models Abstraction: Models that provide performance and
cost estimates for algorithms operating on a given type of data and set of
resources can provide valuable information to a workflow system. Such mod-
els would help the workflow ensure that visualization results are provided in the
required time on available resources. These models will inform the selection of
cores (e.g., CPU, GPU), task placement on resources, and task dependencies
that result from service execution time estimates. The way that a service is exe-
cuted can have a dramatically different impact on a simulation or experiment.
The synchronous in situ processing of expensive services can block the data pro-
ducer, as can excessive data transfer to additional resources for asynchronous in
transit processing.

This abstraction works in conjunction with user intentions, as well as the size
and type of data and available resources. The service must be able to provide
an estimate on the type and amount of resource required to perform the task or
to report that it is impossible so that negotiations can occur with the scientists.
For example, an expensive analysis task might be unfeasible to perform in situ
for every simulation cycle. However, it might be possible to perform every tenth
cycle or, if dedicated visualization resources can be allocated, the user intentions
can be satisfied using in-transit processing.

Declarative Visualization Abstraction: An important distinction exists
between the operation performed by a service and the algorithm used. Common
visualization techniques—such as isocontouring, rendering, or particle tracing—
can be accomplished using several different types of algorithms. Some algorithms
are optimized for certain data types (e.g., structured grids, explicit grids) on cer-
tain hardware types (e.g., GPU or multicore CPU) and have a lower memory
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footprint or minimize communication. A declarative abstraction provides a sep-
aration from the intentions of the scientists and the actual algorithm used by the
service. Given the declarative intention from a scientist, separate from a specific
algorithm, coordination with the workflow system is then possible to select the
proper algorithm that will produce the desired result and optimize performance.

5 Connecting Abstractions to Applications

Both KSTAR and fusion whole device modeling benefits from a data access
abstraction. Access to data is generally the first significant challenge in devel-
oping a visualization capability, especially for in situ environments. A simple
implication of a data access abstraction is a service that can read data from
anywhere in the memory hierarchy (i.e., file or in situ data access use the same
interface). Generally, it is straightforward to obtain output files from previous
runs or test runs from current scientific campaigns. Development, testing, vali-
dation, and scaling against files is generally much easier than trying to do live
analysis in a running campaign. The data access abstraction makes it possible to
easily switch between files and in situ. This was particularly useful for KSTAR
where the data were being moved across the globe. The ability to develop services
and then switch the access mode from file to streams without needing to change
anything else made the development and testing more efficient. This abstraction
enabled the codesign of these services between the visualization and middleware
teams.

The composability and interpretation of data was used in fusion whole device
modeling. This workflow consisted of several different feature extraction services.
As each service extracted features from the simulation output, the data stream
was annotated with VizSchema to describe the relationship among the underly-
ing data. This allowed a single implementation of a rendering service to support
several different use cases. The workflow system chained these service together
and placed them for execution on the computing resources. The rendering ser-
vice used the VizSchema provided in the stream to properly interpret the data
and then rendered images. The portability abstraction was also used by the
fusion example. The rendering service and the isocontouring service used the
VTK-m library, which provides portable performance across multiple processor
architectures.

6 Conclusion and Vision for the Future

Rapidly changing computer architectures, the increasing cost of data movement
relative to compute, and the move to automated workflow systems is a significant
challenge to extracting insight from scientific data. However, a move to service-
oriented visualization allows decoupling the complexity of all these tasks. Our
abstractions provide a road map for visualization services that can take full
advantage of the immense power of modern computing systems, while affording
the flexibility to be connected in arbitrary ways by application scientists.
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We envision a future in which application scientists will make use of visualiza-
tion services without depending on outside expertise for workflow composition.
The ability to specify intentions for visualization and analysis on data, along with
priorities and timelines for when results are necessary will become a mandatory
feature of visualization packages. We envision that these declarative intentions
will automatically be converted into a set of services via natural language pro-
cessing. The statements of priorities and deadlines will form constraints that can
be validated as satisfiable using performance models. Negotiations with the user
might be necessary if there are conflicting requirements; deadlines might need
adjusting, or additional resources might be required. The workflow system will
then take this information and construct a graph of requisite services and orches-
trate its execution. Services will use data access and interpretation schemas to
understand and appropriately process in-flight data. The workflow system will
use dynamic monitoring to update the performance models and make real-time
modifications to service behavior and execution. As the data size and complex-
ity increases and services require more time, the granularity of service execution
can be adjusted (e.g., from every tenth cycle to every hundredth cycle) or the
algorithm used by the service can be changed (e.g., use a faster but lower quality
rendering algorithm).

In order to support the tier 1 abstractions, efforts must be made to agree
on standard methods for data access (e.g., a publish/subscribe model). Several
schemas and data models are actively being used and developed, but ontologies
are needed to ensure flexibility and the interoperability of services. The access
and interpretation of data greatly reduces the barriers to service composition
by workflows systems. Research efforts addressing tier 2 abstractions have been
significant, but these challenges have not all been resolved, and continued work
is needed. Great strides have been made in performance portable algorithms,
and these needs will continue into the foreseeable future. Declarative interfaces
between the user and algorithm implementations will allow the users to specify
requirements and the visualization service can select the correct algorithm for
the type and amount of data, and the specified time frame. Performance models
for a wide range of algorithm classes, workloads and data types are needed that
provide time and cost estimates so that services can be scheduled and placed on
resources.

Collectively, there are rich sets of capabilities for addressing these challenges.
The work required to support the VaaS abstractions involves codesign and mul-
tidisciplinary collaboration to ensure that implementations for interfaces are
available. Adoption of these abstractions, and the standardization of these inter-
faces will enable rich visualization ecosystems. This ecosystem will make it easier
for application scientists to use visualization in their campaigns. It will also make
it easier for visualization scientists to deploy methods and techniques into work-
flows and help extract understanding from the large amounts of scientific data.
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Fig. 1. Schematic representation of the SNS portal services provided at ORNL for
showing how user can access their neutron data remotely, from Campbell et al. [4].

1 Introduction

Oak Ridge National Laboratory (ORNL) hosts two of the largest neutron source
facilities in the world: the Spallation Neutron Source (SNS) and the High Flux
Isotope Reactor (HFIR), which produced nearly 67,000 beamline hours to run
780 experiments for 758 unique users during Fiscal Year 2019 [1].

The Research Software Engineering (RSE) group in the Computer Science
and Mathematics Division (CSMD) is a stakeholder in providing and supporting
a wide variety of data management and computing resources to SNS and HFIR
users [2–4]. As shown in Fig. 1, users can reduce, view, analyze and download
their data using ORNL’s computing resources and software stack. These internal
data reduction workflows present several optimization challenges that are an
ongoing effort in our data management research and development tasks [5].

Event based measurement and processing of neutron scattering data [6,7] is a
recent technique used to collect raw event information at SNS and HFIR instru-
ments. Collection is done either using a live stream [5] or file storage systems
for archival purposes, both of which are the entry point for the post-processing
data reduction workflows for subsequent analysis and visualization either “in-
situ” or “post hoc” [8]. Performance of event-based data reduction workflows is
mainly determined by the time spent loading raw measurement events stored
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in large and sparse datasets. Currently, datasets produced by SNS and HFIR
instruments are stored using the standard NeXus [9] schema that is built on top
of the self-describing serial HDF5 [10] binary file format. At the engine level of
the data reduction workflows is Mantid [11], a framework for data reduction and
analysis used at several neutrons facilities across the world. Mantid presents a
data management and processing model that transforms raw event data from
the NeXus stored files into meaningful reduced quantities of interest to domain
scientists, e.g. statistics.

In addition to world-class experimental neutron facilities, ORNL hosts state-
of-the-art high performance computing (HPC) facilities such as Summit [12],
currently the second fastest supercomputer in the world, and the Compute and
Data Environment for Science (CADES) [13]. Ongoing efforts have shown that
the data life cycle services provided at the neutron sciences facilities can be
leveraged with available HPC computing resources [4,17]. Moreover, the direc-
tion of computing at the U.S. Department of Energy has been influenced by the
extreme heterogeneity in programming models, runtime systems and predictive
tools; which must adapt to the evolving scientific computing needs [14].

The purpose of this paper is to provide our views and plans to leverage the
current status of data management services at SNS and HFIR with the lessons
learned from our experience with HPC resources. There are several reasons to
improve the current status quo of data management services. One recent moti-
vation is that science is increasingly moving towards connected instruments,
Artificial Intelligence (AI) [18] and heterogeneous computing resources [14]. As
a result, AI establishes a research need for understanding and addressing poten-
tial I/O bottlenecks that would slow down data processing from acquisition to
dynamic workflows. The expectation is to enable AI algorithms to be smoothly
integrated into the decision making process that runs the neutrons experi-
ment. The latter is an active research area at ORNL neutrons and computing
facilities [19].

The outline of this paper is as follows: Sect. 2 introduces an overview of the
current data processing workflows at SNS and HFIR; including a description of
the annotated NeXus data and the challenges in data management tasks using
the current Mantid framework. Section 3 provides a brief summary of our short-
term efforts on metadata management strategies to improve the performance
of current neutrons data reduction workflows [21]. Our long-term view is later
discussed in Sect. 4. We describe the proposed domain-specific solution: the no-
cost input output (NCIO) data framework to provide performance and intelligent
I/O at SNS and HFIR. Finally, Sect. 5 provides the conclusions and summary of
our views on the direction to enable an overall better user-experience at ORNL’s
neutrons facilities.

2 Neutrons Data at ORNL Facilities

This section describe the current status and methodologies used to process the
data generated at SNS and HFIR facilities. We briefly describe the NeXus data
format and the data reduction tasks done in the Mantid framework.
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2.1 The NeXus Format

Raw event-based data at SNS and HFIR is stored using the self-describing
NeXus [9] file format which uses the HDF5 [10] library as an underlying tech-
nology for annotation and storage. NeXus is a rich-metadata data format that
follows a strict hierarchy using HDF5’s data organization concepts of groups,
datasets and attributes to identify each collection of raw event based data from
a neutron scattering experiment.

Table 1. File metadata entries for raw event based neutron data using the hierarchical
NeXus schema [9].

Data Type Entry Name

group /entry

attribute /entry/NX class

...

group /entry/DASlogs

attribute /entry/DASlogs/NX class (NXlog)

group /entry/DASlogs/BL6:CS:DataType

attribute /entry/DASlogs/BL6:CS:DataType/NX class

dataset /entry/DASlogs/BL6:CS:DataType/average value

dataset /entry/DASlogs/BL6:CS:DataType/average value error

...

group /entry/bank5 events

attribute /entry/bank5 events/NX class (NXevent data)

dataset /entry/bank5 events/event id

dataset /entry/bank5 events/event index

As shown in Table 1, each hierarchy level in the NeXus schema maps to
a “group” in the underlying HDF5 dataset. Groups are described with a
“NX class” string attribute to identify the group’s type according to source of
the data. Two representative groups are shown for: i) logs, “NX class=NXlog”,
and ii) bank event data entries, “NX class=NXevent data”, which represent the
majority of the processed group data type on data reduction workflows at ORNL.
Actual value entries such as arrays or single values are represented as scientific
datasets (SDS) entries, or “NX class=SDS” in the NeXus schema.

2.2 Mantid Processing of NeXus Datasets

NeXus files are processed using the Mantid framework for data analysis and visu-
alization [11]. Mantid is used as a backend to several SNS and HFIR instruments
data reduction workflows by providing a single and unified “LoadEventNexus”
function call for each raw event based NeXus file. “LoadEventNexus” returns an
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in-memory Mantid structure called an “EventWorkspace” which is designed for
time-of-flight event histograms [6,7]. A schematic representation of the “Load-
EventNexus” workflow is illustrated in Fig. 2. Depending on instrument needs,
different stages of “LoadEventNexus” could potentially become an I/O bottle-
neck on their own.

Mantid EventWorkspace

LoadLogs NXlog

LoadMonitors (op-
tional) NXmonitor

LoadGeometry NXgeometry

LoadBankData NXevent data

LoadEventNexus (input=filename.nxs.h5)

Fig. 2. Mantid’s LoadEventNexus algorithm steps for processing entries of an input
NeXus file generating a Mantid EventWorkspace data structure.

3 Short-Term Performance Improvements

Proper metadata indexing is essential for efficient data management search and
information discovery. As reported by Zhang et al. [20], in-memory metadata
indexing is essential for search in large scientific datasets stored in self-describing
formats. As part of our efforts to improve the I/O performance in SNS and HFIR
instrument data reduction workflows, we introduced modifications to the meta-
data generation and search in Mantid’s NeXus loader. In essence, the hierarchical
metadata generation and search on NeXus datasets has been replaced with effi-
cient in-memory binary-tree indexing strategy. Since the goal of this section is
to illustrate one of the many data management challenges at ORNL neutrons
facilities, we refer the reader to our previous work in [21] for full details on this
effort.
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Table 2. Overall wall-clock times comparison and speed up from applying the proposed
in-memory index data structure on production data reduction workflows for SNS and
HFIR instruments.

Instrument
Workflow

Wall-clock time
current index(s)

Wall-clock time
improved
index(s)

Speed up

GP-SANS 58.9 41.8 29%

Bio-SANS 100.2 80.9 19%

EQ-SANS 99.0 88.0 11%

The impact of this minimally invasive approach is shown in Fig. 3. The CPU
profiling information is presented as flame graphs [23] for the Mantid NeXus
“LoadEventNexus” function, for: (a) the existing implementation on Mantid,
and (b) using the proposed in-memory index binary-tree structure. The x-width
in Fig. 3 indicates the relative amount of time spent on each function; while
the y-block-structure illustrates the calls to different libraries (represented in
colors) in the stack which go deep into the HDF5 and native system I/O calls. A
simple comparison indicates that the relative CPU time spent on tasks related to
metadata management have been largely reduced inside Mantid’s NeXus loader,
by minimizing expensive search and memory management operations.

The overall impact on wall-clock times of production data reduction work-
flows at SNS and HFIR instruments is quantified in Table 2. Results for three
small-angle scattering instruments are presented: a time-of-flight instrument,
EQ-SANS [24], in which information from each raw event is used to reduce the
data; and two monochromatic instruments, Bio-SANS and GP-SANS [25], in
which event data is traditionally not used.

Nevertheless, it is important to point out that further improvements imply
more invasive, thus disruptive, approaches if we want to tackle critical I/O bot-
tlenecks in the overall data life cycle at ORNL’s neutrons facilities.

4 Long-Term View: NCIO

Oak Ridge National Laboratory (ORNL) hosts state of the art computing facil-
ities such as Summit [12], currently the second fastest supercomputer in the
world, and the Compute and Data Environment for Science (CADES). Previous
efforts [4,17] have shown that the data life cycle services provided at ORNL’s
neutron science facilities can be leveraged with the available world-class comput-
ing resources. In order to take advantage of these resources, we need to introduce
new infrastructure that can adapt quickly to the user demands and be able to
exploit available hardware resources.
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Fig. 3. Mantid’s LoadEventNexus CPU profiling flame graph representation from [21]
for (a) current hierarchical index reconstruction implementation, (b) improvements
after introducing an efficient in-memory metadata index.

We summarize a list of requirements for the proposed infrastructure in no
particular order:

– Performance: improve current I/O bottlenecks
– Portability: across different hardware architectures and configurations, in

particular HPC systems
– Domain-specific: provide interfaces to enhance stakeholder communication
– Pluggable architecture: to allow interoperability with different underlying

technologies and data management research tasks
– Modern software practices: for reliable data management operations and

deployment.



182 W. F. Godoy et al.

Fig. 4. NCIO role in the data life cycle at ORNL neutrons facilities expanding The
Consumers Managers Producers (CMP) Model from [3].

4.1 The NCIO Framework

We proposed a new input output library, named NCIO for No-Cost Input Out-
put. We see the current status quo as an opportunity to introduce new capabili-
ties to customize data management tasks combining domain-specific abstractions
and available HPC resources. Our view is that performance in data management
involves several stages in how the data is managed from generation at the facility
data producer instruments to the final domain scientist consumers. The role of
NCIO is presented in Fig. 4 which expands on Donaldson et al. [3] illustration of
the Consumers Managers Producers (CMP) model applied at ORNL neutrons
facilities. Therefore, we propose a unified approach for efficient data reduction,
analysis and transport at the different stages of the data life cycle.

Similarly, NCIO must have an independent domain-specific interface that
is abstracted away as possible from underlying technologies that facilitate the
annotation and storage of data. As explained by Sprinkle et al. [15], “when using
domain-specific approaches developers construct solutions from concepts repre-
senting things in the problem domain, not concepts of a given general-purpose
programming language”. Fowler [16] states: “The key bottleneck in software
development is communication between developers and those for whom they’re
developing”. Hence, by introducing domain-specific software and methodologies
we expect to improve the overall communication and productivity of the domain
scientists and the developers at ORNL facilities. This is not a new concept and
similar efforts of domain-specific interface standardization can be found in phys-
ical simulation schema-based data libraries [9,26].
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Fig. 5. Schematic representation of NCIO’s architecture showing how consumers must
interact only with the domain-specific “business” layer, while the IO layer should allow
for multiple underlying technologies.

NCIO must have a flexible and “pluggable” architecture. The latter will allow
us to research and develop suitable data management solutions based on SNS
and HFIR instruments’ specific business needs. Figure 5 illustrates the proposed
layered architecture of NCIO.

We put emphasis in the separation between the domain-specific “business”
and the “IO” layers as they cover different aspects in the data management life
cycle:

1. “IO layer”: this interface abstracts away the general semantics of underlying
technologies that facilitates the access to the raw data bytes. It includes the
NeXus-based data descriptor layer and the virtual transport layer.

2. “Domain-specific business layer”: this interface provides access to spe-
cific instrument needs. Semantics is based on each SNS and HFIR instrument
quantities of interest e.g. histograms.

Our view is that NCIO will standardize interactions between domain scien-
tists and their instrument data by providing simple interfaces based on familiar
concepts. NCIO will remove the requirement to users to pick up more general
interfaces such as those provided by the underlying technologies in Fig. 5.

As shown in Fig. 5, NCIO lowest layer will enable interoperability with a wide
variety of underlying I/O technologies which are suitable for different file systems
and network technologies [10,22,28]. Interoperability itself has been recently
provided in HDF5 (using a Virtual Object Layer) [10], while it was a design
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requirement in ADIOS2 [22]. Thus, the consumer benefits from these libraries
application programming interfaces (APIs) serving as a proxy to several under-
lying technologies to integrate several I/O capabilities at a lower development
cost.

It is of particular interest that NCIO is able to interact with ORNL’s HPC
modern file systems [27]. NCIO must be flexible enough to be deployed with
the proper configuration options that enable performance in HPC production
systems. At the same time, NCIO must adapt quickly to novel HPC hardware
and software paradigms as they become available [12].

4.2 NCIO Risks

Like in any disruptive technology, there are associated risks that we will cover
in this section. These can be summarized in a few items:

– Lack of community acceptance
– Unstable interfaces
– Reliance on underlying technologies
– Minimal performance impact

Our plan is to carefully address each potential risk without minimizing
their consequences. In particular, we will strive for establishing effective com-
munication practices across NCIO stakeholders: facility users, Computational
Instrument Scientist and Research Software Engineers. Nonetheless, NCIO must
adhere to modern software engineering practices to ensure a quality product.
Last but not least, NCIO must serve as an adaptable research framework to con-
tinue explore different data management strategies as novel computing resources
are available.

5 Conclusions

We outline our view and plans to leverage the current data management method-
ologies and operations at Oak Ridge National Laboratory (ORNL) neutrons
science world-class facilities: the High Flux Isotope Reactor (HFIR), and the
Spallation Neutron Source (SNS). While we showed that our short-term efforts
to manage the produced annotated metadata more efficiently have a moderate
impact in the search and discovery of information; a more disruptive long-term
approach is proposed: the no-cost input output (I/O), NCIO, framework. We
outline our rationale so the reader is convinced that introducing a pluggable
architecture and unified domain-specific capability will result in a sustainable
infrastructure that enhance the business needs at ORNL such as: operations,
communication, and provide leverage to HFIR and SNS stakeholder with avail-
able high-performance computing (HPC) resources at ORNL to provide a scal-
able data management framework. NCIO is expected to provide services that
are customized to the users’ data management needs rather than having them
to adapt to particular underlying technologies.
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Abstract. There is an unprecedented promise of enhanced capabilities
for federations of leadership computing systems and experimental science
facilities by leveraging software technologies for fast and efficient opera-
tions. These federations seek to unify different science instruments, both
computing and experimental, to effectively support science users and
operators to execute complex workflows. The FedScI project addresses
the software challenges associated with the formation and operation of
federated environments by leveraging recent advances in containerization
of software and softwarization of hardware. We propose a software frame-
work to streamline the federation usage by science users and it’s provi-
sioning and operations by facility providers. A distinguishing element of
our work is the support for improved interaction between experimen-
tal devices, such as beam-line instruments, and more traditional high-
performance computing resources, including compute, network, storage
systems. We present guiding principles for the software framework and
highlight portions of a current prototype implementation. We describe
our science use case involving neutron imaging beam-lines (SNAP/BL-3,
Imaging/CG-1D) at the Spallation Neutron Source and High Flux Iso-
tope Reactor facilities at Oak Ridge National Laboratory. Additionally,
we detail plans for a more direct instrument interaction within a fed-
erated environment, which could enable more advanced workflows with
feedback loops to shorten the time to science.
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1 Introduction

There is an increasing interest in science workflows [6] that integrate both experi-
mental instruments and high-performance computing (HPC) infrastructure (e.g.,
supercomputers, storage systems, networks). A Science Federation is a union of
distributed, scientific instruments (computing & experimental) that creates a
co-operative system for users/operators of complex workflows. Often the orches-
tration within these workflows becomes increasingly difficult due to unique ele-
ments of HPC environments and the level of localized expertise needed to make
effective use of the resources. As workflows expand beyond a single administra-
tive domain, the challenges increase because of differing site policies – the more
distributed environment is not managed by a single entity. The operators of
individual facilities optimize only locally, which can lead to misalignment, such
as when a supercomputer is allocated while the wide-area network reservation
is unavailable or a beamline time slot is not currently active. When an activ-
ity requires coordination across sites, setup can take weeks, during which time
critical scientific work may be delayed.

The software infrastructure needed to enable science federations requires
tools and methods be developed to enable different facilities to contribute
resources, which can be leveraged by science users in an effective manner. This
requires software interfaces be created to help abstract the underlying systems
into a more consistent user-friendly form. Additionally, the users and opera-
tors of the distributed system may have poor visibility into the overall system
performance and need monitoring & diagnostic capabilities. Lastly, this operat-
ing environment should reduce the setup time from month/years to hours/days
so that incorporating resources into an experiment is not too time consuming.
Additionally, the interaction of different instruments will require interfaces to
“steer” experiments to make the overall process more agile. This is to reduce the
time requirements, but also to enable more dynamic workflows that can adapt
to changing resource availability and task priority/urgency.

The software infrastructure needed to enable science federations is distinct
from a workflow engine that is primarily concerned with performing tasks for a
specific scientific investigation. Workflow engines sit a layer above the federation
and use federation interfaces to more easily provision distributed resources based
on user input, resource availability and system health. While workflow engines
are useful for expressing and automating science workflows, our federation soft-
ware stack is focused on providing interfaces to help manage the distributed,
heterogeneous resources and instruments in the system. This federation stack
can be used in conjunction with a workflow engine to more easily perform sci-
entific investigations across distributed environments.

Given this motivation we have begun work developing the Federated Science
Instruments (FedScI) software stack that can be used to support connecting
instruments at the Spallation Neutron Source (SNS) and High Flux Isotope
Reactor (HFIR) to federated computational resources. In this paper, we describe
early work on a framework for the federation of scientific instruments. We include
details about a science application from SNS/HFIR that we use to ground our
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work with a real-world use case with neutron imaging scientists in mind. We
also describe our current plans to incorporate virtual instruments for exploring
more dynamic and interactive controls within our testbed environment.

2 Science Use-Case

Neutron radiography and computed tomography cover a broad range of scien-
tific applications at the Spallation Neutron Source (SNS) and the High Flux
Isotope Reactor (HFIR), e.g., Spallation Neutrons and Pressure Diffractome-
ter [7] at SNS, Neutron Imaging Facility [4] at HFIR. Challenges often arise
when data has limited statistics (fast measurements, limited view of the sam-
ple due to sample environment in the way, etc.) thus making the data nor-
malization, reconstruction, difficult. In many cases, iterative reconstruction, a
computer-intensive method, is required to obtain high fidelity mapping of the
linear attenuation coefficient in the sample (which is used to quantify changes
as a function of space and/or time). The lack of access to a platform that can
draw computing resources when needed hinders scientific discovery. Moreover,
neutron beam time is expensive and inadequate live feedback leads to less than
optimized measurements. Ideally, access to a Science Federation will allow the
scientific team to make informed decision for better scientific productivity at the
neutron beamline.

For example, at the reactor, 3D computed tomography (CT) of kinetics such
as water uptake in roots requires scans that last less than an hour, thus pro-
ducing data sets that have very poor signal-to-noise ratios. Reconstruction is
impossible when attempting to reconstruct the data in 3D with low computing
methods such as the filtered-back projection. These measurements can only be
reconstructed using advanced reconstruction method such as the iterative recon-
struction (a computer-demanding technique). Over 2 days, several tens of CT
scans are acquired and increase the complexity due to the large data sets that
need to be reconstructed and compared to each other.

At the SNS, complexity arises from the capability to measure multiple CT
scans at different wavelengths (up to 3000 CT scans over several days). However,
there is currently no capability that allows reconstruction of low SNR data (sim-
ilar to HFIR CT scans of kinetic events). The uniqueness of the SNS source is
that it is capable of detecting microstructure in crystalline samples. This is called
the Bragg edge technique, and unlike HFIR which measures the linear attenua-
tion coefficient on each voxel, it requires heavy modeling and fitting of the Bragg
edges to interpret the non-scalar (up to 6 unknowns per voxel) information on
each voxel. This technique, when developed to its fullest, will provide 3D strain
mapping of superalloys such as additively manufactured components. Indeed,
today microstructure information is mainly done using electron backscattered
diffraction (EBSD) or other destructive techniques that can be time-consuming
and costly.



192 T. Naughton et al.

Fig. 1. Compute mobility with SNS/HFIR workflows to leverage federated resources.

Compute Mobility. Productivity is a crucial element for science workflows.
The time for end-users to run tests on the experimental instrument is limited
(time-share notified in advance on monthly/weekly basis) and is costly. There-
fore, minimizing the time spent in setup and analysis is critical for achieving max-
imal benefit of the reservation time for the scientists and experimental resources.
As such, the instrument scientists often pre-stage software on SNS resources in
advance of beamline allocations to help expedite work upon arrival. However,
this limits the set of resources where the workflow can operate as it assumes
the software pre-installed. The workflow involves stages where visualization is
needed during the post-processing of data for inspection while reviewing results
and making choices for future parameters for subsequent instrument runs. The
instrument scientists at SNS/HFIR have developed a workflow that leverages
Jupyter notebooks to aid the post-processing and visualization [5]. This improves
the interactivity of the data processing and allows for fast customization.

The federation of scientific resources offers more options for scientific explo-
ration. For example, our initial review of the HFIR workflows identified areas
where the data processing was not tied to a specific hardware resource, assuming
appropriate network and storage is made accessible. The model of a pool of feder-
ated resources that can be dynamically connected through software-defined net-
working enables new opportunities to reduce the processing time using compute
resources available elsewhere in the federation. The required analysis software
can be bundled into compute containers that can run wherever the data can be
made available via the dynamic network and storage methods. This fits well with
the Jupyter notebooks, which can be packaged into containers and deployed to
run on the federated resources (Fig. 1). This captures the time saving needed for
the software pre-staging and the compute mobility of the containerized applica-
tion increases the set of resources where parts of the workflow can operate.
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3 Framework Design

3.1 Overview

Connecting multiple, diverse scientific instruments (computing and experimen-
tal) together offers many potential advantages to science users, but also requires
that additional software infrastructure be provided to make the distributed het-
erogeneous environment useful. While it is feasible for end-users to install client
software and tools to access a federated set of resources, it is unlikely that a
single monolithic software stack will be deployed by every resource provider.
Therefore, we assume a modular software framework that can be customized
at the different resource provider sites to reduce their barrier of entry to the
federation. This involves intelligent management and coordination interfaces at
the federation level.

Additionally, we need methods to incorporate experimental instruments into
workflows with more agile interfaces that allow for dynamic capabilities to reduce
the time to science (e.g., workflows with feedback loops). However, we recognize
there is a need to create testbeds for experiments before deploying software at
real world instruments. Therefore, we include in our framework the ability to
create virtualized instruments to investigate interfaces for controlled steering of
scientific experiments.

In this section, we describe the Federated Science Instruments (FedScI) soft-
ware framework that is being created to help streamline connecting and using
federated resources. We include details about the design and review assumptions
that guide the work.

3.2 Roles

There are effectively three roles defined within the FedScI framework. These roles
are mainly differentiated by 1) the level of awareness (details) of the distinct
resources comprising the federated environment and 2) the responsibilities for
providing or managing said resources. How these roles are filled for a specific
federation is flexible. Each role may be filled by an individual person, group, or
organization, but in some instances a single person, group, or organization may
conceivably fill multiple roles for the federation.

– Science Users are chiefly concerned with running their scientific experiments
as efficiently and productively as possible. Having a federated network includ-
ing both the user’s computational and experimental resources reduces over-
head for the user and compresses the overall time for generating results.
Some users may still need to specify which resources are best suited for their
experiments but should find default selections based on the input adequate.
Ideally, the Science User would not need to provide configurations for differ-
ent resources in the federation and the resources would simply be available
for use.
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– Resource Providers are mainly interested in making resources available to the
federation in an effective and easy to use manner, while still maintaining facil-
ity policies for security and accounting. As such, facilities are also interested
in knowing what, if any, new capabilities are needed in order to support fed-
erated environments (i.e., requirements for mechanisms/services). Providers
are responsible for running the components and services that expose the given
resources to the federation for science users to access.

– Federation Maintainers provide the overall federation stack and are respon-
sible for bridging the gaps between the Science Users and the Resource
Providers. Their goal is making the distributed system as useful and efficient
as possible. Another goal is to present the federation to Science Users in a
way that minimizes the learning curve for using different resources without
introducing unnecessary user constraints. This role is responsible for support-
ing varied users and providers by providing a flexible, plugin based software
architecture that allows the Science User and Resource Providers to easily
contribute to the overall federation.

3.3 Software Architecture

The FedScI software stack is comprised of several core components and services
that provide the requisite functionality for building science federations. It is
designed using a plugin based architecture so the software stack can be easily
extended and customized in order to support specific requirements or provide
specific resources to different federations. Some components (for example the
plugin management, messaging, and logging) are shared throughout the entire
stack and provide the base functionality for different services. Each role men-
tioned in the previous section is responsible for running various services in the
software stack to establish the overall federation. Figures 2 and 3 shows a dia-
gram of the FedScI software architect with the different services and components
that comprise the software stack and the roles responsible for executing those
pieces.

There are two main services that must be running for any science federation:
the manager and the resource providers. The manager service coordinates all
actions with the distributed resources in the federation and serves as the main
entry point for controlling the federation. In addition, this service is run by the
Federation Maintainers. The provider services connect the associated instru-
ments (sensors, compute, storage, or networking) to the federation and serve
as a bridge for routing command and control to the instrument from the fed-
eration manager. Resource providers start the provider service for their specific
instruments.

Federation Manager: The federation manager service is the heart of the Fed-
ScI software architecture. It handles all coordination throughout the entire fed-
eration including starting and stopping resources based on system events or user
input. This effectively acts as a surrogate for all actions within the federation.
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Fig. 2. The FedScI software architecture diagram detailing various services and com-
ponents and the roles in the federation responsible for running each piece.

Fig. 3. The FedScI software stack.

The manager itself consists of several modules including: a message broker, per-
formance analyzer, global data store, main controller, and various command and
control interfaces. It is implemented using a plugin based approach that allows
for easy extension of the manager for either future or custom capabilities for
specific federations.
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Message broker - The message broker provides a core function of the manager
as it handles all of the publish/subscribe messaging within the entire system.
Messages are published with defined topics and, in turn, individual resources or
the main controller can subscribe to those topics for handling events raised in
the system. This ability to schedule operations or control experiments or instru-
ments based on events occurring anywhere within the federation is a primary
justification for establishing a federation. Functionality for publishing messages
and registering callbacks is built into the base classes of the FedScI software
stack, which simplifies developing plugins for new instruments.

Analytics - Performance analysis is a core functionality of the FedScI software
stack; understanding the health of all resources connected through the federa-
tion is extremely important. The available networking resources are an obvious
example that demonstrate the benefit of analytics and monitoring performance
within the federation. The federation is a distributed system by nature, so all
communication and data transfers need to happen over many different networks
(whether those be local or wide area networks). For example, understanding the
current performance of each network link in the federation (mainly in terms
of bandwidth and latency) provides vital information that can help the users
(or main controller) determine whether transferring data to another distributed
resource for processing is actually beneficial. If a network link is not providing
the expected performance, it may not be feasible to transfer data and instead
choose an alternate resource for processing data.

Controller - The final core component is the main controller, which serves as
the central point for managing the federation. It handles several functions, such
as tracking the current state of any connected resources, triggering actions once
certain events occur, and enforcing resource polices defined in the system. The
controller also provides a remote procedure call (RPC) interface for users to
query system information, allocate resources, launch jobs, or trigger events in the
federation. The controller is ultimately responsible for determining how actions
are distributed to available resources based on defined policies and input from
the analytics modules. For example, when a federation consists of multiple sim-
ilar resources (like computing facilities), the controller can decide to route data
and jobs to one site over another based on the available network bandwidth
or computational system load. From the science user’s perspective, they simply
request a resource for executing jobs and the controller chooses the best option
based on the system state, the defined policies, and the job characteristics.

Other - Other functions that are provided by the manager service include a
data store, logging mechanism, configuration parser, and various user interfaces.
The data store is for storing information global to the federation, which could
include data such as performance values, current system statuses, or current
configurations. A central logging mechanism allows the federation maintainers
to trace the overall execution of the federation and more easily identify and debug
any issues that may be occurring in the system. The configuration parser allows
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users to provide configuration files that define properties of the federation such
as the required resources, resource policies, network topology, expected system
performance, system security, and enabled modules. User command and control
interfaces also use the plugin functionality provided in the software stack’s shared
base classes to allow for new interfaces to be easily developed. Some simple
interfaces such as a command line interface and web interface can be provided
in the software stack for easy management of the federation.

Resource Providers: The resource provider service in the software stack
implements a base framework for connecting given resources and instruments
to a federation. The base implementations provide the needed functionality for
connecting to the federation manager (broker and the RPC interface), handling
events (callbacks) and commands, logging, configuration parsing. Like the man-
ager service, the provider service uses a plugin based architecture that allows for
easy extension and customization. Each resource that is connected to a federa-
tion will have a unique set of constraints and environments, so each provider will
likely need customization to support the specific requirements of that resource.
This approach also allows the resource provider to run multiple modules within
the service, including: the main control and command bridge, performance and
diagnostics tools, data endpoints, data managers, the resource manager, and
any user endpoints. Each provider service could also include multiple similar
modules, such as multiple data endpoints or resource managers.

The resource provider roles are responsible for executing the provider service
to make their resource available to the federation. As mentioned previously,
each resource will likely require some customization in order to connect it to the
federation, however the plugin architecture greatly simplifies this. Some resources
may share similarities allowing reuse of different control modules between the
different software stacks. Since the provider service uses a dynamic configuration,
different modules can be easily enabled and disabled for each resource.

Control Bridge - While the resource provider service will be unique for each
resource, one of the main required components is the control bridge. The control
bridge serves as the main connection to the federation and is responsible for
handling command and control from the federation manager and routing to the
appropriate modules (resource manager, data endpoints, etc.). It is also respon-
sible for both publishing resource events to the federation and creating callbacks
and subscribing to events occurring on other resources in the system. This bridge
is also responsible for handing active control of connected resources, including
both computing resources and scientific instruments. This active command and
control channel allows for dynamic, near real-time experiments to execute using
the federated resources and reducing the overall time for producing results.

Diagnostics - Each provider service must also include a performance and diag-
nostic module that determines the current health and capabilities of the moni-
tored resource and reports this status to the analytics module in the federation
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manager. The diagnostics module periodically characterizes the current status
of the provided resource and publishes this information to the analytics module.
It also possesses the ability to execute different stress tests and diagnostics on
demand for debugging and testing purposes.

Understanding the current system’s loads and the health of available
resources is critical for the efficient operation of the federation. Because of the
distributed nature of the science federation, many different environmental fac-
tors could influence the operation of resources, which may force the federation
manager to migrate jobs or data to other available resources.

For example, suppose a federation consists of multiple compute facilities with
different levels of capability and network connectivity. If the primary compute
facility is under extremely high loads due to other users and experiments, the
diagnostics modules notify the federation manager so it can make more informed
decisions on job placement. It may be more beneficial to shift work to a less
capable compute resource simply because the load on the primary resource would
create unreasonable wait times for job completion.

Messaging. Messaging is a fundamental function of the software stack because
the federation is, by definition, a distributed system. Not all communication
between different components and services in the system requires the same type
of messaging pattern, so the stack implements multiple patterns for different
scenarios rather than attempting to force a single pattern to fit for all communi-
cations in the system. This approach allows the use of existing platforms, which
are well suited for each messaging pattern. The FedScI framework wraps these
existing capabilities with base classes to provide easy access to messaging for
modules and plugins.

The three types of messaging patterns implemented within the FedScI stack
include: publish/subscribe (asynchronous) events, remote procedure calls (syn-
chronous), and bulk data transfers.

– Publish/Subscribe - One of the main messaging patterns within the federation
is asynchronous publish/subscribe events or notifications. This pattern pro-
vides the basis for hooking different events and performing associated actions
within the federation that allows for a more dynamic configuration for feder-
ation. These events can be consumed by the federation manager or even the
different resource providers. Within a scientific workflow, there are multiple
different types of events that can occur during an experiment, including: new
data being available at a sensor, completed data transfer, or completed ana-
lyzing a dataset. Users can choose to hook events to trigger actions based on
those events. For example, the federation may be configured to initiate a data
transfer and spin up computational resources when new data is produced by
a sensor, so the resources are already provisioned once the data transfer is
complete.

– Remote Procedure Call - While the asynchronous messaging pattern could
be used to implement command and control in the federation, using a syn-
chronous remote-procedure-call (RPC) method provides a better and more
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simple structure for these operations. Many control operations in the federa-
tion can be implemented using a blocking, synchronous approach. Examples of
this include the federation manager starting or stopping resources within the
federation, or querying the current state of the connecting provider services.
This pattern fits any communication (especially commands and operations)
where the caller is always expecting some return value (if even the operation
takes a few seconds).

– Bulk Data - The bulk data transfer pattern is specific for handling all of
the scientific data that is produced, processed, and stored during the course
of experimentation using the federation. Many scientific experiments can be
extremely data intensive, producing massive amounts of data that need to be
processed with high performance computing. The sheer amount of data that
can be produced would quickly overwhelm the publish/subscribe and RPC
messaging patterns. Because of this, the federation stack provides support
for multiple bulk data transfer methods which are highly optimized for trans-
ferring data between different facilities. Examples of this include the Globus
stack [3] and the ADIOS frameworks [1].

Challenges. While this work is currently in progress, a key difficulty we antic-
ipate involves the need to interoperate with existing facility resource manage-
ment systems and site policies. We can not assume a totally new environment
will be deployed at every endpoint, but instead must leverage existing infras-
tructure at the facilities and supplement missing pieces as needed. This means
we will need to write the framework software that joins these pieces together.
This will require connecting heterogenous systems consisting of different comput-
ing architectures, network capabilities and administrative domains. In addition
to the standard HPC services (compute, network, storage) we must also pro-
vide support of interoperability with existing control systems for experimental
instruments, e.g., EPICS. Our framework strives to provide a structure whereby
we may begin to fill the software gaps related to the aggregation of HPC &
experimental resources into a system of federated science instruments.

4 Virtual Beamlines

In order to move toward a more agile environment, we need to link compute
resources with a more responsive instrument interface. We anticipate the com-
pute elements can leverage newly emerging queues at HPC centers for preemp-
tion or fixed submit time (bound on whether will/will-not get run, to help quasi-
urgent processing workloads). However, additional interfaces and connections are
needed at the instrument level to facilitate a more direct linkage. As such, we
are investigating an instrument gateway that could be used to connect an exper-
imental resource into the federation.

We expect that the production instrument gateways will be a slow adoption,
and therefore in the interim we are exploring “virtualized” beamlines to assist in
prototyping. The virtual instruments can run much of the same software stack
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but are devoid of the actual physical resources/apparatuses, so we must imple-
ment mock procedures to emulate expected instrument behavior. For example,
we can “produce” live images using previously captured historical datasets, at
fixed output rates, to emulate standard detector procedures. The fidelity of the
science is low with these dataset “replays,” but the software procedure realism
is high and in some cases the exact same software stack is run in our virtual
testbed environment.

4.1 EPICS

The Experimental Physics and Industrial Control System (EPICS) is an open-
source toolkit for the design of distributed control systems [2]. The toolkit was
started over 30 years ago (circa 1989) between the LANL Ground Test Accel-
erator and the ANL Advanced Photon Source. The software is now used by
numerous facilities around the world.1

EPICS includes software/firmware to interface/interact with hardware and
electronics devices (e.g., detectors, motors, sensors, magnets). The toolkit
includes support for storing and processing system state in a variety of patterns
to create open or closed loop controls. This includes the ability to read and write
status values, calculate control functions and other device I/O operations. The
toolkit also includes various network protocols for accessing the distributed ele-
ments (e.g., locate/identify (publish/subscribe) system state, callback/notify on
state change). There are also graphical and text-only user interfaces for operators
to monitor and control devices, and archive/browse historical data.

There are four key elements used in the EPICS system. The Input/Output
Controllers (IOCs) encapsulate software modules to process/serve hardware
devices (or other IOCs) and can range from real-time firmware controllers
to software pieces (e.g., scripts, python, C/C++, etc.). The state of the
“live” system is stored in Process Variables (PVs), which are “named data
with attributes”. These PVs can be of two datatypes: simple native types
(float/integer/boolean/strings) or array types (“waveforms”, 1-D vectors of
native types). The primary internal messaging among items in EPICS is done
via a custom Channel Access (CA) communication protocol. (Recent EPICS ver-
sions extend the system with an additional PV Access (PVA) communication
protocol, which further supports the use of simple data structures and selective
publish/subscribe services for individual data elements.) Lastly, there are clients
used to interface with the various IOCs and PVs using either command-line tools
or graphical displays. All of the clients are loosely coupled and are completely

1 Some EPICS deployments in USA include: SNS, ANL/APS, BNL, SLAC, LANL,
JLAB/CEBAF, LBNL, Fermilab D0, Keck & Gemini Telescopes; and some interna-
tional deployments: Australian Square-Kilometer Array Pathfinder (ASKAP) and
Synchroton; Canadian Light Source; DESY, BESSY, in Germany; PSI/SLS in
Switzerland; Ganil, SACLAY in France; Diamond Light Source and ISIS in Eng-
land; KEK, J-Parc in Japan; IHEP in China; NSRRC in Taiwan; PLS in South
Korea.
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detachable without causing the underlying control system to stop functioning,
i.e., if a client detaches or fails then the IOC-based controls will continue to
operate uninterrupted.

The EPICS system is widely used for the experiment controls at SNS/HFIR.
For example, the neutron imaging instruments we are working with expose the
“Run Control” via an EPICS interface that allows for the standard operations,
e.g., Start/Stop, Pause/Resume, etc. A screen capture of this interface is shown
in Fig. 4.

Fig. 4. Screen capture of EPICS based control interface for neutron imaging instrument
at SNS.

4.2 FedScI EPICS Bridge

The direct controls for a beamline are something that must be tightly controlled
to ensure proper safety, both for human individuals and for scientific equip-
ment/sample materials. The EPICS system has been created to provide a reliable,
modular and effective control system for such experimental scientific devices. As
such, we believe it offers a good basis for creating a connection to a federation, to
compose more advanced workflows and interfaces while still keeping proper con-
trol at the local science instruments. We can precisely select only the subsystems
and PVs for which we export status and information into the federation, and more
importantly which ones we might open up to access for external “steering” feed-
back or control from workflows or other entities within the federation.

By creating a “Bridge” between the EPICS software IOCs and the Science
Federation, we can expose and leverage many of the available capabilities of the
EPICS control system from within the beamlines. Initially, access to the beamline
systems would be strictly read-only. For example, by providing read access to the
right PVs, we could determine status information like whether an “Experiment
is Running”, or what is the current “Sample Temperature.” Additionally, one
of the key metrics for experiment completion, at least at the SNS, is expressed
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SNS:SNAP:BL3 RunStatus

SNS:SNAP:BL3 StopRun Command:RunStop()

SNS:SNAP:BL3 RaiseTemp Command:SetTemp
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Fig. 5. Illustration of a FedScI EPICS bridge device to create a virtual beamline.

in terms of the amount of “proton charge collected” versus a targeted total
amount. This kind of metric could be exposed to provide more direct details
on the ongoing experiment status and progress. Knowing how close a given
experiment is to completion can provide a unique opportunity to preemptively
stage any data post-processing resources (network, storage or compute) before
the run actually finishes. A change to a given beamline PV’s state could be
applied to signal other services in the federation that the experimental run is
nearing completion, to identify compute reservations that need to be obtained,
or to make a network data transfer bandwidth reservation. These PVs could
be used to trigger federated workflows to analyze either live/intermediate data
or final post-mortem data results. We plan to tie this type of information into
the FedScI messaging system via publish/subscribe capabilities, for use by other
components/entities in the federation.

This EPICS-to-Federation Bridge also provides a potential mechanism for
identifying “steerable parameters,” i.e., EPICS PVs in the beamline con-
trol system that could be externally written to via requests originating from
the federation. Subscriptions could be made for processing such external
directives/commands, to execute locally-controlled subroutines or adjust key
operating parameters at the beamline instrument. The specific local Bridge
details/configuration settings would provide tight control over precisely which
aspects of the beamline could be externally controlled and how/when. Incor-
porating the Federation Bridge as part of a dual-sided EPICS IOC within the
beamline control system enables a simple and easy interface for local facility
adoption, that integrates smoothly into the existing local infrastructure.

Ultimately, we believe this approach will provide a very low entry point for
facility configuration, as it is exposing pieces of the native infrastructure that
are already in use at the experimental facilities. This offers easy customization
and incremental design by both federation users and instrument scientists alike.
It also enables clear and understandable control points for connecting to other
federation resources (Fig. 5).
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5 Conclusion

The aggregation of distributed scientific instruments into federations is an ongo-
ing challenge. A key component of this challenge is the creation of services and
software interfaces that can help to streamline the use of federations, both by
the science users and resource providers. We described our current plans for a
software framework that endeavors to support the users and providers of feder-
ations, while balancing needs for flexibility to fit the existing infrastructure and
policies at the different facilities.

The work is being driven by a science use case from SNS/HFIR that involves
neutron imaging beam-lines. We are using software containers to enable com-
pute mobility of the analysis applications that process results from the instru-
ments. Additionally, we are exploring ways to make instruments more dynami-
cally accessible. Our approach for creating a more agile interface to experimental
instrumentation is being explored through the creation of a virtual instrument
prototype based on the widely used EPICS control system. The approach lever-
ages EPICS’ software control interface (an IOC) to create a software “bridge”
between the instrument and the federation. This lowers the hurdles for adoption
and enables a small incremental start, whereby we may choose key instrument
state variables (PVs) and capabilities to expose for possible steering experiments.
This also empowers instrument scientists and federation maintainers to quickly
copy and extend the bridge for additional features or other beamlines/facilities.
Ultimately, this work seeks to provide a more interactive instrument status and
control interface to the federation that can be used to trigger more dynamic
scientific workflows, both during and after experiments.
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Abstract. The National Ecological Observatory Network (NEON) is a
continental-scale observatory with sites across the US collecting stan-
dardized ecological observations that will operate for multiple decades.
To maximize the utility of NEON data, we envision edge computing sys-
tems that gather, calibrate, aggregate, and ingest measurements in an
integrated fashion. Edge systems will employ machine learning methods
to cross-calibrate, gap-fill and provision data in near-real time to the
NEON Data Portal and to High Performance Computing (HPC) sys-
tems, running ensembles of Earth system models (ESMs) that assimilate
the data. For the first time gridded EC data products and response func-
tions promise to offset pervasive observational biases through evaluating,
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benchmarking, optimizing parameters, and training new machine learn-
ing parameterizations within ESMs all at the same model-grid scale.
Leveraging open-source software for EC data analysis, we are already
building software infrastructure for integration of near-real time data
streams into the International Land Model Benchmarking (ILAMB)
package for use by the wider research community. We will present a per-
spective on the design and integration of end-to-end infrastructure for
data acquisition, edge computing, HPC simulation, analysis, and valida-
tion, where Artificial Intelligence (AI) approaches are used throughout
the distributed workflow to improve accuracy and computational perfor-
mance.

Keywords: Data-model integration · Eddy-covariance ·
Environmental observatory · National Ecological Observatory Network
(NEON) · Edge computing systems · High performance computing ·
Earth system models · Land surface models · Model benchmarking ·
International Land Model Benchmarking (ILAMB)

1 Introduction

Advanced computational resources and new algorithmic developments have
extended our environmental understanding over the past few decades. Now, an
unprecedented volume of standardized observational data products (ODPs) are
being realized through the National Ecological Observatory Network (NEON).
NEON collects environmental and biological data with in situ sensors, observa-
tional sampling, and aerial overflights. Core components of NEON infrastructure
are 47 tower sites, where eddy-covariance (EC) sensors are used to determine the
surface–atmosphere exchange of momentum, heat, water, and carbon dioxide to
assess interactions at the soil–vegetation–atmosphere interface. This continental-
scale data set, having numerous contextual observations available in near-real
time, affords new data-model integration opportunities to leverage such observa-
tions for new scientific understanding and to potentially enable viable ecological
forecasting capabilities. This paper explores several ways that continued develop-
ment of data-model integration, through new measurements, synthesized ODPs,
and access to near-real-time data, contributes to improved scientific understand-
ing of ecosystem processes and advances efforts to constrain uncertainty in Earth
system models (ESMs) and subsequent benchmarking. First, we provide a back-
ground for the potential of data-model integration, the state of ESMs and bench-
marking, and the growth of network-scale observations. Next, we discuss our
vision for integrating network observations to improve model predictive capa-
bilities, minimize prediction uncertainties, and advance forecast accuracy with
scale-aware ODPs and near-real time data. Lastly, the roadmap to accomplish-
ing our stated goals is outlined with considerations of emerging technologies that
have the potential to broaden our goals.
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1.1 Improving Scientific Understanding Through Data-Model
Integration

Data-model integration is quickly becoming a fundamental component in efforts
to evaluate and enhance our capabilities to simulate Earth system processes
(Fer et al. 2018). Data-model integration improvements can be realized through
improved parameterization of initial conditions, data assimilation techniques to
inform model states or parameters during simulations, and comprehensive bench-
marking of model structure and evaluation against observations (Dietze et al.
2014; Zobitz et al. 2011). Network-scale observations of ecosystem functions, such
as surface-atmosphere exchange (SAE) of energy, water vapor, and trace gases,
have historically (Stöckli et al. 2008) and continue to lead to novel advances in
model performance (Fer et al. 2018).

Improved Model Optimization and Benchmarking

Additional Contextual Observations. Optimized model parameterization or con-
straints via data assimilation typically targets periods or conditions when model
uncertainty is greatest. Enhanced access to numerous contextual observations
can inform underlying model processes or elucidate missing information. Data
assimilation constrains model predictions by comparing model output with
ODPs, determining probabilistic differences, and advancing ensemble members
with informed posteriors. The improved availability of repeated and interopera-
ble in-situ, reanalysis, and remote sensing data with quantified uncertainty for
weighting in assimilation and model benchmark scoring is expected to facili-
tate tuning process representations in ESMs and inform data providers of ODP
requirements that are still unmet (Hoffman et al. 2017; Collier et al. 2018).

Resolving Scale Mismatch Between Simulations and Observations. Terrestrial
ecosystem processes are widely recognized to be heterogeneous at spatial scales
well below those resolved by most ESMs resulting in a spatial representativeness
uncertainty when evaluating/informing models with single point observations
(e.g., Riley and Shen 2014). Scaling has been shown to be non-linear with veg-
etation cover (e.g., Launiainen et al. 2016) and sensitive to resolution, scaling
method, and the magnitude of heterogeneity (Wang et al. 2016; Liu et al. 2016).
SAE observations based on the eddy-covariance (EC) flux technique (e.g., Aubi-
net et al. 2012) are one example of a process-scale benchmark for assessing the
performance of ESMs (e.g., Fox et al. 2009; Williams et al. 2009; Schwalm et
al. 2010; Schaefer et al. 2012) that suffers from such scale mismatch. Using site-
based EC measurements for model benchmarking is thus complicated by biases
arising from unmet assumptions on the observations. These include the limited
and varying spatial representativeness of the observations at model grid scale
(e.g., Chen et al. 2011; Griebel et al. 2020), and the observations violating the
conservation of energy (e.g., Mauder et al. 2020). Both of these biases increase
with spatial heterogeneity, which complicates regional-scale model benchmarking
and improvement (e.g., Metzger 2018; Xu et al. 2020). Therefore, spatial scaling
of site-based flux observations to ESM grid scales using multi-scale observations
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is needed to reduce uncertainties in flux estimates and constrain model bench-
marking.

From Hindcasting to Forecasting. Ecosystem models are key to synthesiz-
ing process understanding, examining simulated ecosystem functioning against
observations at local to regional scales, and can provide the scientific basis
for field measurement campaigns (Dietze et al. 2014). The Predictive Ecosys-
tem Analyzer (PEcAn) framework is a powerful ecoinformatics framework that
utilizes Bayesian data assimilation techniques to inform models with ODPs.
As such, PEcAn is a prime example of the synergistic improvements realized
through data-model integration for both model parameterization and observa-
tional data requirements to reduce uncertainty (LeBauer et al. 2013; Dietze
et al. 2013; Kattge et al. 2011). Access to low latency, repeated, and interop-
erable ODPs with quantified uncertainty is facilitating a movement to near-
term ecological forecasting. These forecasts are envisioned to inform land-use
decision makers with the most accurate predictions of ecosystem function via
iterative model assessment and improvement through comparison with near-
real-time data (Dietze et al. 2018). Similar model evaluation and benchmarking
of ESMs can be realized; however, this approach likely involves a large number
of perturbed parameter ensembles (PPE) of models or machine learning-based
surrogate models running on high performance computing (HPC) systems.

1.2 Earth System Models and Benchmarking

Earth system models (ESMs) are designed to simulate the coupled multiscale,
multiphysics processes associated with interactive dynamics, physics, chemistry,
and biology across the land, ocean, sea ice, land ice, and atmosphere that drive
the Earth’s climate system (Randall et al. 2018). Originally conceived as models
of physics and dynamics, focused primarily on atmosphere and ocean processes,
early global climate models evolved into ESMs with the inclusion of terres-
trial and marine ecosystem processes, atmospheric chemistry, and human system
interactions (Bonan and Doney 2018; Flato 2011). Research with these coupled
ESMs has demonstrated that the carbon cycle responds to climate but also that
large nonlinear climate feedbacks are produced by the biosphere (Friedlingstein
et al. 2001, 2006; Arora et al. 2013). Terrestrial ecosystems in ESMs are repre-
sented by a variety of vegetation types, an amount of leaf area, functioning of
stomata in leaves, and carbon and nutrient pools that interact with energy and
water cycles (Bonan 2016). Relatively simplistic representations of vegetation
and soil processes in land surface models (LSMs), typically contained within
coupled ESMs, capture the mean state behavior of plants and soils over large
spatial scales on annual time scales. However, process understanding limits the
ability to reduce errors and biases when compared with observational data at
local scales (Schimel et al. 1997).

Forecasting ecosystem responses to environmental forcing is important for
resource management and understanding impacts of rapid climate change or land
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use change (Clark et al. 2001; Foley et al. 2005; Luo et al. 2011). While long-term
EC flux measurements help to constrain energy, water, and carbon cycles for
individual biomes (Baldocchi et al. 2001), more rapid integration of these data
with models—employing data assimilation and benchmarking tools for uncer-
tainty quantification, parameter optimization, and structural optimization—will
improve understanding of these processes and lead to more mechanistic represen-
tations in models and more accurate ecosystem forecasts (Williams et al. 2009;
Raupach et al. 2005).

LSMs rely on a collection of process representations, called parameterizations,
embodied in numerical algorithms that employ many often-uncertain parame-
ters to approximate the evolution of carbon, water, and energy in the natural
world (Bonan 2019). Data assimilation methods are commonly used to calibrate
and evaluate model accuracy and parameter uncertainty (Luo et al. 2011). Rau-
pach et al. (2005) presented methods for assimilating diverse data and separating
observational from model errors to produce more accurate forecasts of the global
carbon cycle. These methods have been applied across scales, from global inver-
sions (e.g., Ricciuto et al. 2008) to individual tree stands (e.g., Moore et al. 2008;
Ricciuto et al. 2011), with a variety of approaches, including Kalman filters or
ensemble Kalman filters (e.g., Quaife et al. 2008), other maximum likelihood
techniques, and least squares optimization methods (e.g., Prihodko et al. 2008).
Sophisticated data assimilation packages that ingest EC flux measurements are
now being coupled directly to complex forward land surface models for use on
HPC systems (Fox et al. 2018; Bastrikov et al. 2018). Perturbed physics ensem-
bles (also called perturbed parameter ensembles) or PPEs employ thousands of
ensemble simulations to develop an understanding of the sensitivity or impor-
tance of individual parameters or to quantify the impacts of their uncertainties
on feedbacks, extremes, or model skill (Fischer et al. 2011; Sanderson et al.
2010). Conducting large numbers of ensemble simulations to search for opti-
mal parameter combinations for complex ESMs has become so computationally
intensive that in some cases surrogate models are being developed and used in
place of running LSMs directly (Li et al. 2018; Lu et al. 2018). For example,
Ricciuto et al. (2018) analyzed the sensitivity of five key carbon variables to 68
model parameters in the US Department of Energy’s (DOE’s) Energy Exascale
Earth System Model (E3SM) land model using a global sensitivity analysis on
96 FLUXNET sites. Lu et al. (2018) further optimized 8 of 68 parameters of the
E3SM land model using surrogate-based global optimization. Executing these
direct or surrogate simulations is one part of the challenge; evaluating model
results in a systematic fashion is another.

Systematic evaluation of model results, through comparison with observa-
tional data, is important for quantifying model fidelity (Randerson et al. 2009).
As ESMs become more complex, routine assessment of model performance must
be performed for verification of new parameterizations, evaluation of impacts
on other model components, and validation of simulations under changing envi-
ronmental conditions. The land modeling community has developed a variety of
evaluation approaches for terrestrial carbon cycle models (Cadule et al. 2010;
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Blyth et al. 2011; Abramowitz 2012; Anav et al. 2013; Piao et al. 2013). Some
benchmarking approaches are based on an expected, pre-defined level of perfor-
mance (Abramowitz 2005; Best et al. 2015), but most systematic benchmarking
strategies produce a skill score based on a direct model-data comparison. Lack
of standardized evaluation metrics and methods have limited adoption of model
benchmarking and use of a wide diversity of observational data sets.

The International Land Model Benchmarking (ILAMB) project was orga-
nized to engage the research community in the development of standardized and
internationally accepted benchmarks for land model performance. The ILAMB
community aims to strengthen linkages among experimental, remote sensing, and
climate modeling communities in the design of new model tests and new mea-
surement programs, and supports the design and development of open source
benchmarking tools through international workshops and working group activ-
ities (Hoffman et al. 2017). With support primarily from the US Department
of Energy, community ILAMB activities have resulted in creation of an ILAMB
benchmarking software package for evaluation of LSMs that incorporate biogeo-
chemical cycles (Collier et al. 2018; Hoffman et al. 2017). The ILAMB package
produces graphical and tabular diagnostics across a range of biogeochemistry,
hydrology, radiation and energy, and forcing variables. It scores multi-model per-
formance for period mean, bias, root-mean-square error (RMSE), spatial distri-
bution, interannual coefficient of variation, seasonal cycle, and long-term trend.
The design philosophy and details of its implementation and methodology are
described by Collier et al. (2018). Efforts are underway to directly link ILAMB
to PEcAn for more rapid assessment of site-level simulations over diurnal time
scales. Being an open source and extensible package with a scalable design, so
that it can run on the largest HPC systems, makes it a good choice for evalu-
ating the results of ensemble simulations aimed at parameter optimization and
uncertainty assessment.

1.3 Network-Scale Observations

Network-scale flux tower observations—such as those available from FLUXNET
(Baldocchi et al. 2001), AmeriFlux (Novick et al. 2018), ICOS, TERN, or
NEON (Metzger et al. 2019a)—are revolutionizing ecosystem science by pro-
viding observations that cover large spatial areas across a broad variety of eco-
climatic zones. The proliferation of standardized and interoperable flux network
ODPs through cross-network collaboration and integration strengthens the abil-
ity of observations to explain measured environmental variability. For instance,
NEON provides data to AmeriFlux, which along with ICOS and TERN, feed into
FLUXNET. However, limitations exist on standardized measurements across
networks, and substantial latency can be incurred for fully quality controlled
data sets with quantified uncertainties.

NEON is a continental-scale observatory with sites across the US that will
operate for multiple decades. NEON produces data products, software, and ser-
vices to facilitate research on the impacts of climate change, land-use change,
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and invasive species. NEON collects environmental and biological data with in-
situ sensors, biometric observations, and aerial overflights. One of NEON’s core
components is its 47 tower sites, where EC sensors are used to determine the
SAE of momentum, heat, water, and carbon dioxide to assess interactions at
the soil–vegetation–atmosphere interface. These data are streamed from tower
sites to a central NEON headquarters facility. There, calibration coefficients are
applied, quality assurance and quality control are performed, and additional pro-
cessing algorithms are applied to derive higher level data products. The resulting
ODPs are served on the NEON data portal, currently with about a one month
latency. The latency of biometric and airborne remote sensing data varies by
ODP. One unique aspect of NEON ODPs is the standardization of sensor infras-
tructure, biometric protocols and algorithms for processing. This standardization
and ubiquitous availability of “contextual” observations with respect to SAE pro-
cesses, position NEON ODPs as a perfect test suite for ESM hypothesis testing
and benchmarking.

2 Visions to Improve Model Performance with
Network-Scale Observations

2.1 Scale-Aware Observational Data Products for ESM Evaluation

Improved understanding of model-data interfaces enables maximizing the useful-
ness of ODPs for ESM improvement. For data-model integration, we commonly
rely on half-hourly intervals as the lowest common timestep denominator. That
is, we expect both ODPs and models to capture in half-hourly slices the dynamics
emerging from environmental processes at a much broader range of scales. From
the observational perspective, inconsistencies arise when we interpret continuous,
nonlinear environmental processes and non-symmetrical observation techniques
through discrete data processing and analytics that assume linearity and Gaus-
sianity. Resultant half-hourly ODPs may be biased on the order of several 10%
due to space/time ambiguity associated with scaling (Xu et al. 2017), violation
of energy conservation (Mauder et al. 2020), etc.: our models might perform
better or worse than we think because we already know that our current ODP
reference is off. Here we explore how we could rectify the situation by creating
half-hourly ODPs that capture environmental processes at scales consistent with
expectations for data-model integration.

A Complementary Benchmarking Framework. To resolve the scale mis-
match between simulations and observations, participants of the DOE-funded
2019 RUBISCO-AmeriFlux Working Group Meeting (Hawkins et al. 2020)
conceived a scale-aware benchmarking framework that complements top-down
ODP constraints with bottom-up ODP process information across DOC, DOE,
NASA and NSF projects (Fig. 1). The proposed approach will enable consistent
regional-scale evaluations of carbon, water, and energy cycles in ESMs. At the
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center of the framework is the ILAMB package, which facilitates benchmark-
ing ESMs in a modular fashion. The NCAR-NEON Community Land Model
(CLM5) implementation is one example of an enhanced ESM module for use
with ILAMB. Participants of the NSF-funded 2019 NCAR-NEON Workshop
conceived an implementation of CLM5 that leverages an unprecedented range
of contextual observations to constrain model uncertainty. In the past e.g. plot-
based biometric observations, high-resolution airborne remote sensing, gas phase
and water phase isotopes, replicate soil properties, as well as aquatic properties
in adjacent lakes and streams have not been uniformly available at the flux
tower network scale. With the advent of NEON these contextual observations
are routinely available alongside traditional flux tower data from all 47 NEON
terrestrial field sites, in standardized format via the NEON Data Portal and
Application Programming Interface (API; Metzger et al. 2019a). A particular
science focus of the NCAR-NEON CLM5 implementation is error characteri-
zation, including model structure, parameters, initial conditions, meteorological
forcing, and observational error.

Large-scale observations of the atmospheric composition and its variation
across time and space provide a first principal constraint on the benchmarking
framework (e.g., Tans et al. 1990; Gurney et al. 2003; Battle et al. 2000; Pacala
et al. 2001). The strength of this top-down ODP constraint is that it provides
a direct measure of atmospheric stocks, though attribution to surface processes
remains challenging (e.g., Houweling et al. 2017). These top-down constraints
are available from tall towers (e.g., Miles et al. 2012; Andrews et al. 2014), air-
borne (e.g., Sweeney et al. 2015; Miller et al. 2016; Barkley et al. 2019) and
spaceborne observations (e.g., Chen et al. 2020). One example is NASA’s Atmo-
spheric Carbon and Transport (ACT) - America campaign, which measured
atmospheric carbon concentrations, trace gases and meteorological conditions
via aircraft in five campaigns spanning all four seasons from 2016–2019 (Davis
et al. 2019). ACT-America’s airborne measurements are temporally sparse, but
spatially extensive, covering four seasons and major ecoregions of the central and
eastern United States. These flights are designed to provide regional-scale, sea-
sonal constraints on carbon exchange rates by mapping out carbon and related
trace gases (Baier et al. 2020) within synoptic weather systems (Pal et al. 2020),
complementing the temporally-rich but relatively spatially sparse tower obser-
vations and spatially comprehensive column averaged space-borne observations.

Network-scale flux tower observations such as available from FLUXNET
(Baldocchi et al. 2001), AmeriFlux (Novick et al. 2018) or NEON (Metzger et al.
2019a) provide the second principal constraint on the benchmarking framework.
The strength of this bottom-up constraint is that SAE observations provide a
direct and independent benchmark for assessing the process-scale performance
of ESMs, though scale mismatch and surface energy imbalance remain challeng-
ing. Here, we seek to improve model benchmarking with flux tower data through
two synergistic bottom-up approaches, an “extensive” and an “intensive” app-
roach. The extensive bottom-up approach annotates AmeriFlux data with spatial
attributes (e.g., land cover, vegetation indices, etc.; Chu et al. 2020). Thanks to
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comparatively weak data requirements this approach is readily applied to 200+
AmeriFlux sites. Site spatial representativeness can now be assessed by compar-
ing spatial attributes in the flux surface source area vs. the target domain, such
as a model grid cell. This approach facilitates shortlisting spatially representative
sites (e.g., sites with similar plant functional type and vegetation characteristics
between the flux source area and target domain) for initial model benchmark-
ing, and improved model representation of compound ecosystems. The extensive
approach also serves as a prior to identify and prioritize the sites where the
intensive approach is deemed necessary, which we explore in more detail in the
following section.

Fig. 1. Scale-aware benchmarking framework that complements bottom-up process
information with top-down constraints across DOC, DOE, NASA and NSF projects.
Presented during the AGU 2020 Fall Meeting NCAR-NEON Town Hall (Metzger et al.
2019b)

Scale-Equivalent Observational Benchmarks. In contrast to the shortlist-
ing employed in the extensive bottom-up approach, the intensive bottom-up
approach aims to fully utilize the variability inherent to changing flux tower
sample characteristics. The aim here is to develop scale-aware ODPs from point
and line observations for improved model benchmarking at equivalent space and
time resolutions. This is achieved by fully incorporating the source area dynam-
ics in source area-to-target-area upscaling (Fu et al. 2014; Metzger et al. 2013a;
Ran et al. 2016; Xu et al. 2017). These approaches show great merits in pro-
viding space-time explicit flux ODPs that model predictions could be readily
benchmarked against at designated grid cells. Furthermore, the Environmental
Response Function (ERF) Virtual Control Volume (VCV) spatio-temporal data
assimilation system shows promise to also close the surface energy imbalance
frequently observed at flux towers (Metzger 2018; Xu et al. 2020), which to date
hamstrings data synthesis and model-data fusion with a pervasive bias (e.g., Cui
and Chui 2019; Mauder et al. 2020; Stoy et al. 2013).
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While ERF promises complete data utilization it has comparatively strong
data requirements. This includes EC high-frequency data, which are currently
limited to AmeriFlux Core (N = 14) and NEON (N = 47) sites, and Ameri-
Flux Tech Team site visits (N = 40–50). Specifically, surface and meteorological
controls on the fluxes change at minute timescales through transience of source
areas, the passing of clouds, etc. Thus, performing ERF analyses at minute- and
decameter-resolution allows separating meteorological and surface controls on
the fluxes in unprecedented clarity: spectral averaging and source attribution of
high-frequency data combined with machine learning connect fluxes to meteo-
rological and surface properties, and ultimately transfer the joint information
to the model grid scale. The utilization of high-frequency wavelet flux calcula-
tions produces response variable observation with large sample sizes and high
signal-to-noise ratio. Thus, providing ample data for the boosted regression trees
technique to extract the key driver-response relationships (Metzger et al. 2013a).
Results include half-hourly flux maps and propagated uncertainties, alongside
estimates of the spatial mean and land-cover specific fluxes and their variation
across space (Fig. 2). Figure 2 illustrates the mapped projection of turbulent sen-
sible heat flux, the transfer of heat inducing a change in temperature, through-
out the day across a 30 km× 30 km grid centered on the AmeriFlux Park Falls
tall tower site. The derived spatially attributed fluxes from ERF are observed
to transition from negative to positive as the surface warms during the day,
with clear hot- and cold-spots observable due to the landscapes heterogenuous
ecosystem. By including mesoscale motions in a continuous, fixed-frame repre-
sentation of all hot- and cold-spots within a model grid cell ERF-VCV reduces
advective errors by at least one order of magnitude, which effectively closes the
surface energy balance (Xu et al. 2020). Where ESMs do not explicitly represent
site heterogeneity, we integrate flux maps to probability density functions and
from there to statistical measures of location and dispersion (Metzger 2018).
We will add these to the ILAMB database of regional simulations to design new,
probability-based model benchmarking metrics/scores, and inform the weighting
of observations in the data assimilation, uncertainty quantification, and site-level
validation processes.

The flux maps are accompanied by a set of non-linear response functions,
jointly extracted from ground, airborne, and spaceborne data (Fig. 3). These
will serve as benchmarks for diagnosing calibrated models and attributing
remote sensing data to surface processes. Ultimately, they allow designing new
benchmarking metrics/scores based on ERF-observed vs. ESM-modeled driver-
response relationships/surfaces (e.g., Koven et al. 2017).

The promise of scale-aware model benchmarking is that we can better ascribe
differences between models and observations to process, parameter, driver, and
random error (Dietze 2017), to which we might otherwise falsely attribute scale-
related differences. In short: to what extent can we better evaluate or benchmark
models with flux data when we consider a flux product that fully matches the
scale of the model output and considers the mixing of spatial and temporal
variability that occurs at many flux tower sites? The approach outlined here
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Fig. 2. Flux source area variations over time at the AmeriFlux Park Falls tall tower
122 m measurement height, modified after (Metzger et al. 2013b). The transient source
areas are superimposed over the fixed-frame ERF-derived grids of turbulent sensible
heat flux. Reprinted from Agricultural and Forest Meteorology, Volume 255, Stefan
Metzger, Surface-atmosphere exchange in a box: Making the control volume a suitable
representation for in-situ observations, Pages 68–80, Copyright (2018), with permission
from Elsevier.

Fig. 3. Multi-dimensional flux response functions at the AmeriFlux Park Falls tall
tower 122 m measurement height, modified after (Metzger et al. 2013b).
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provides a framework to partition observational uncertainty into scale-related
and instrument-related components. Benchmarking or data assimilation is not
possible without proper characterization of uncertainty in both observation and
model. A systematic approach is essential to make forward progress. A systematic
application of a scale-aware benchmark also allows for identification of “ideal”
sites or a complementary suite of measurements necessary for an observational
site to be considered a high-quality benchmark.

To this last point, recent field experiments have exploited the “super-site”
concept to better evaluate the mix of measurement types, extent, and frequency
to develop a robust scale-aware benchmark. For example, the Chequamegon Het-
erogeneous Ecosystem Energy-balance Study Enabled by a High-density Exten-
sive Array of Detectors 2019 (CHEESEHEAD19) field project deployed a quasi-
random extensive set of EC flux towers within a “model grid”, coupled with a
range of airborne and ground based sampling of surface and atmospheric prop-
erties and expansive collection of satellite remote sensing imagery (Butterworth
et al. 2020). Campaigns like this or the proposed NCAR-NEON super-site project
provide a window into the capability of scale-aware benchmarks. They provide
a framework for future experimental design of long-term super-sites or identifi-
cation of core observables necessary to develop scale-aware benchmarks at other
sites.

Similarly, nesting sub-grid models within global gridded ESMs provides
another opportunity to incorporate scale dependencies within the model. The
NOAA Climate Process Team (CPT) Coupling of Land and Atmospheric Sub-
grid Parameterizations (CLASP) is evaluating how large eddy simulations (LES)
and parameterizations can be used to enhance representation of subgrid pro-
cesses in a model. Such approaches further enhance the value of a scale-aware
benchmark.

These experiments and developments thus provide a testbed for evolving the
scale-aware benchmark approach. With these, we can start to ask: how much
can we relax the high frequency and high resolution data requirements of the
ERF approach and still reliably estimate grid-resolved fluxes and uncertainty?
How does varying combinations of EC, concentration gradient, tower-mounted
imaging, and new sensing techniques expand the reach of the methods into dif-
ferent trace gas fluxes or with higher accuracy? Can ERF also be used to map
and predict state variables like biomass, leaf area, canopy chemistry, near-surface
temperatures, and other sources of subgrid variability that facilitate space-time
consistent ESM inputs and outputs? What are new ways to benchmark mod-
els once a space and time resolved benchmark or subgrid model is available?
Is the information value of the benchmark limited to the single “grid-cell” of
the land-surface model or is the spatial/temporal correlation structure useful
for propagating the benchmark to other locations? A number of open research
questions and exciting directions are currently foreseen, such as space/time gap-
filling and partitioning to resolve issues inherent to current approaches, including
confounding space/time transience with biophysical processes.
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To summarize, ERF-derived ODPs fully match the scale of ESM inputs
and outputs, and comply with previously unmet observational assumptions.
The results are half-hourly flux maps of a model subgrid domain that facili-
tate consistent integration among multi-scale observations and models at flux
tower sites. Individual flux pixels even provide a direct link to plot-scale surface
observations, such as soil plots and biometric observations. Furthermore, in-situ
response function benchmarks improve model diagnosis and remote sensing data
interpretation. These scale-aware properties promise unequalled realism for inte-
grating observations and models through overcoming long-standing differences
in perception across disciplines.

2.2 Near-Real Time Data Accessibility for ESM and Benchmarking

SAE ODPs for evaluating ESM are currently either available from individual
sites in near-real-time, or from many networked sites with latencies on the order
of 6 months to 1 year. Due to its central collection and processing structure
NEON has the opportunity to push the boundaries of near-real-time data avail-
ability to facilitate ecological forecasting, data assimilation into ESMs, and ESM
benchmarking. Currently, the vast majority of NEON’s 53 terrestrial instru-
mented systems (TIS) data products are available with a 1-month latency via
the NEON data portal (https://data.neonscience.org/) and API (https://data.
neonscience.org/data-api/) due to a monthly publication cycle. However, NEON
SAE processing pipeline improvements are in development to reduce data latency
to 1–5 days. To our knowledge, this would be the largest EC tower data set pro-
vided in near-real-time globally.

A pilot project envisioned from the aforementioned NCAR-NEON workshop
developed a workflow to grab NEON data from the API, perform some quality
assurance and quality control, gap-fill data, partition fluxes, and package data
in a netCDF data format that is ingestible by CLM5, ILAMB, and PEcAn.
The workflow is being hosted on Github (https://github.com/NEONScience/
NCAR-NEON), has been containerized (https://quay.io/repository/ddurden/
ncar-neon-ddurden), and is deployable via command line for integration with job
schedulers or workflow managers. The NEON data pipeline is transitioning to a
microservices-based Pachyderm architecture (https://www.pachyderm.com/), a
version control system for data that preserves data provenance. In the Pachy-
derm pipeline, any new commit to data, metadata, or processing code triggers
the reprocessing of downstream derived products. Integration of ODP genera-
tion for model-data fusion into this architecture promises near-real time data
access with full provenance. Work with the scientific community still remains
to address where community modeling and benchmarking data sets should be
hosted and determine the essential ODPs to be provided both for driving models
and evaluating/benchmarking.

To support rapid and scalable assessment and benchmarking of LSM results,
a Land Model Testbed (LMT) system is being developed through a pilot project
at ORNL (Fig. 4). Aimed at delivering a workflow for very large ensemble
simulations, the LMT provides software infrastructure for running multiple

https://data.neonscience.org/
https://data.neonscience.org/data-api/
https://data.neonscience.org/data-api/
https://github.com/NEONScience/NCAR-NEON
https://github.com/NEONScience/NCAR-NEON
https://quay.io/repository/ddurden/ncar-neon-ddurden
https://quay.io/repository/ddurden/ncar-neon-ddurden
https://www.pachyderm.com/
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Fig. 4. A Land Model Testbed (LMT) workflow for running and evaluating large num-
bers of ensemble simulations for multiple LSMs on the Summit supercomputer system
and dynamically provisioned cloud resources is being developed at ORNL. Site-specific
benchmarks for EC super-sites and new functional relationship metrics are being incor-
porated into ILAMB, and a dynamic user interface is being developed to give users
better control over how model-data comparison results are displayed through an inter-
active dashboard.

models on the Summit supercomputer system and dynamically provisioned cloud
computing resources. New site-specific benchmarks for EC super-sites and new
functional relationship metrics are being incorporated into ILAMB to support
assessment of large ensembles and PPE simulations. An interactive dashboard is
being designed to give users control over how benchmarking results and graphi-
cal diagnostics are displayed. Interfaces are also being developed around ILAMB
for activation (executing an analysis) and linking to diagnostic results following
the evolving Coordinated Model Evaluation Capabilities (CMEC) standards.
CMEC interfaces will further enable connections to NOAA’s Model Diagnostics
Task Force that promotes development of process-oriented diagnostics for climate
and weather forecasting models (Maloney et al. 2019). These improvements are
key to informing parameterization improvements to address long-standing model
biases and to delivering credible projection results for assessing climate change
impacts and vulnerabilities for stakeholders and policy-makers (Eyring et al.
2019).

The LMT, combined with NEON’s near-real time SAE ODPs, offers a truly
scalable approach for rapidly conducting ecological forecasts on HPC systems
and evaluating model performance as new measurements are made. We envi-
sion integrating the multi-scale observations from NEON’s distributed edge
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computing systems with multiple LSMs running in the LMT framework on cen-
tralized HPC systems and distributed cloud computing resources. This data-
model integration approach will advance ecological research and improve mech-
anistic understanding of Earth system processes important for environmental
sustainability.

3 Roadmap to Scientific Understanding

The roadmap to extracting scientific understanding through data-model integra-
tion is contingent on multiple working groups working toward common under-
lying goals of maximizing our predictive capabilities, minimizing uncertainty
associated with our predictions, and advancing our forecast accuracy with near-
real-time data. Near-real-time data cyber-infrastructure is on the verge of being
realized for multiple flux tower networks, and is opening new pathways to near-
term ESM benchmarking, parameter optimization, and data-fusion techniques.

The 2019 RUBISCO-AmeriFlux Workshop (Hawkins et al. 2020) planned
roadmap lays the foundation for the bottom-up scaling approaches to produce
scale-aware ODPs and ingest them into the ILAMB benchmarking framework
(Fig. 5). For the extensive bottom-up approach initial data processing is com-
plete, and the manuscript by Chu et al. (2020) introduces the results and newly
available spatial attributes to the community at large. Our planned goal for 2020
is to produce a shortlist of homogeneous sites for initial model benchmarking,
with additional milestones through 2021 (Fig. 5). For the intensive bottom-up
approach, the group is working on integrating the ERF-VCV data sets into
ILAMB. At this time, the group has successfully ingested the NEON NetCDF
file format into ILAMB, and is compiling the Metzger et al. (2019a) 30 min
flux grids into these files. Planned goals for 2020 include regional ILAMB eval-
uations and site-level validations to design performance scores, with additional
milestones through 2023 (Fig. 5). We further envision a hybrid “simplified high-
res mapping” bottom-up approach to reduce ERF-VCV data requirements for
use at all AmeriFlux sites, which is currently ahead of schedule.

The bottom-up approaches are complemented by the top-down syntheses
of aircraft campaign data from ACT-America, an array of terrestrial ecosys-
tem models, posterior flux estimates from atmospheric inverse flux estimates
and AmeriFlux observations. The expected outcome is spatially and temporally
comprehensive evaluation of the performance of these ecosystem models and
inversion posteriors. This evaluation will provide insight into the process limita-
tions of these models and the existing seasonal, regional biases in the inversion
systems. The improved understanding will be used to improve the prior flux esti-
mates used in atmospheric inversions, and to improve the process representation
in regional to continental scale simulations of terrestrial carbon fluxes.

Through the convergence of high throughput computational frameworks pro-
cessing EC data and applying machine learning algorithms to develop scale-
aware ODPs with multiple instances of ESMs running on HPC, we can make
substantial strides to our understanding of Earth systems processes across spa-
tiotemporal scales that have previously restricted such studies. The advancement
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Fig. 5. Status and roadmap of the bottom-up scaling approaches. Blue font indicates
areas of currently active work. (Color figure online)

of ecosystem understanding is not confined to the described work though. The
development of the Waggle, an open sensor platform for edge computing, by
the Array of Things (AoT) opens the door to enhanced distributed data col-
lection, advanced reactive measurements, and manipulative studies (Beckman
et al. 2016). NEON has the observational infrastructure, such as sufficient power
and network connectivity at tower sites and advanced command and control
capabilities, to utilize such compute infrastructure in the future.
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Abstract. Synchrotron light sources are routinely used to perform
imaging experiments. In this paper, we review the relevant computa-
tional stages, identify bottlenecks, and highlight future opportunities to
streamline data acquisition for experimental microscopy workflows. We
demonstrate our preliminary exploration with an end-to-end scientific
workflow on Summit based on micro-computed tomography data. Com-
putational elements include: 1) reconstruction of volumetric image data;
2) denoising with deep neural networks; and 3) non-local means based
segmentation and quantitative analysis.
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1 Introduction

Synchrotron-based X-ray micro-computed tomography (µCT) is often used to
obtain 3D images of complex microscopic structures. In recent years, growth in
photon intensity and data collection rates have outpaced the growth in compu-
tational and I/O performance [6,7,35]. Due to this mismatch computation has
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increasingly become a bottleneck in the associated experimental workflows. This
trend necessitates adoption of scalable image processing methods so that exper-
imental data can be analyzed in a reasonable length of time. The emergence of
fast micro-tomography, which is used to image transient phenomena, is particu-
larly linked with rapid data generation rates. Multiple computational stages are
required to process the raw data from the synchrotron beamline and perform
the analyses needed to inform scientific inquiry. Real-time data processing capa-
bilities are driven by the desire to adjust experiments on the fly to improve the
value and quality of data collected. Such workflows are extensible to the study of
a wide variety of physical phenomena, and are actively used to support inquiries
based on digital rock physics. Digital rock physics refers to a broad class of first-
principles based methods that are used to study how the complex microstructure
of geologic materials influences physical behavior in those systems. While these
methods have mature applications in geosciences, in principle the same general
approaches can be extended to other complex systems where microstructure has
a predominant impact on system behavior, e.g. biological tissues, fuel cells and
other engineered systems. In this paper we consider the computational require-
ments for end-to-end digital rock physics workflows, including data collection,
data movement, data processing, storage and simulation.

Traditional image processing workflows can involve a wide range of tasks.
Common examples include noise removal [9,12,14,15,18,33], artifact removal
[3,34,37], image segmentation [16,19,25,29,31], edge detection [10,17], isosur-
face construction [4,23], and others. Many possible algorithms exist to carry out
each task, and the impact on data quality and the associated computational
requirements can vary considerably. For applications in digital rock physics, it is
also common to perform additional quantitative analysis and to use µCT data to
perform direct numerical simulations of physical processes [2,8,27]. Nearly all of
these cases present intriguing applications for artifical neural networks (ANNs).
The capacity for ANNs to streamline experimental workflows hinge on several
factors: (1) to improve data quality based on the use of “smart” algorithms;
(2) to add value by augmenting workflows to incorporate additional capabilities;
(3) to carry out equivalent computational analyses while reducing the computa-
tional costs of applied algorithms; and (4) to reduce or eliminate manual aspects
of data processing such that human intervention is less pervasive within com-
putational workflows. In this work, we review computational aspects needed to
generate results based on digital rock approaches that rely on synchrotron µCT
and identify opportunities for future improvement.

2 Data Acquisition

It is well-known that data generation rates associated with synchrotron light
sources have outpaced the growth in computing power. The associated compu-
tational challenges are well-illustrated based on experimental workflows for fast
µCT. We consider fast µCT based on the experimental workflow that is in place
at the GSECARS beamline at the Advanced Photon Source, Argonne National
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Fig. 1. Experimental setup for the GSECARS beamline at the Advanced Photon
Source (a). The flow system used to inject either a single fluid or multiple fluids (b).
Example radiographs collected during surfactant flooding of oil saturated Mt. Gambier
limestone (c). 3D Region of interest (ROI) rendering of residual oil during surfactant
flooding (d).

Laboratory. Among the capabilities of fast µCT is to image dynamic processes,
such as the movement of fluids within geological materials [1,5]. The data con-
sidered in this work are based on multiphase flow through porous media, and
were collected using the procedure summarized in Fig. 1. The physical sample
is placed into a core-holder and connected to an experimental apparatus that is
used to control fluid flow through the sample. The experimental conditions can
be programmed remotely from a computer so that the desired flow dynamics
can be realized without directly interacting with the sample while it is being
imaged. Each three-dimensional image is generated based on a sequence of 900
radiographs that capture the photon intensity after the beam passes through the
sample. The detector size was 1920 × 1200 pixels, which determines the size of
the reconstructed image. Between each radiograph a precise motorized system
rotates the sample approximately one-half degree. Based on the intensity of the
light source and the photon wavelength it is possible to model the photon atten-
uation attributed to the sample for each radiograph. A three-dimensional image
can then be constructed by formulating an inverse problem to approximate the
internal structure of the sample based on the observed sequence of radiographs.
The reconstruction step corresponds to the first computational stage required
in tomographic experiments. For fast µCT this procedure is repeated in succes-
sion to obtain a sequence of 3D images such that transient phenomena occurring
within the sample can be observed directly. For the data collected in this work,
approximately 40 s were required to collect the 900 radiographs used to recon-
struct a single 3D volume. A sequence of 75 3D volumes were collected in a single
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Fig. 2. Summary of computational elements involved in APS-OLCF synchrotron
microscopy workflow. Multiple different software tools are used to reconstruct and
analyze the data; computational tasks within the workflow are performed on local
workstations or remotely on HPC resources.

fast µCT experiment with a duration of one hour. For each volume the total size
of each reconstructed volume is 16.5 GB. The associated data generation rate for
the experimental setup depicted in Fig. 1 is therefore 1.2 TB/h. Each 3D volume
is composed from 16-bit integer data with 1620 × 1620 × 1200 voxels. For the
purposes of this work algorithms are implemented to operate directly on the
volumetric data.

3 Summary of Computational Stages

Microscopic imaging approaches are inherently dependent on computational
methods that perform data processing. The workflow used here is illustrated
in Fig. 2. Data processing was carried out both at the APS experimental facility
and the OLCF. Data transfers between the two facilities were performed using
Globus as the front-end, with ESnet supporting the underlying data movement.
Within the OLCF, three computational resources were used to (1) Summit was
used to support computational benchmarking; (2) Rhea was used to visualize
results; and (3) Slate was used as a workflow orchestration tool. Particular com-
putational tasks are described in more detail in the following subsections.

3.1 Tomographic Reconstruction

Tomographic reconstruction is applied to infer the three-dimensional microstruc-
ture of the sample based on the information contained in the radiographs. The
performance measurements reported in this work rely on the reconstruction algo-
rithm gridrec, which formulated to reconstruct a three-dimensional map of the
material structure that best predicts the set of observed radiographs [13,28].
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Fig. 3. Summary of steps within conventional image segmentation pipeline for syn-
chrotron micro-tomography data for Benntheimer sandstone: (a) reconstructed volu-
metric data contains noise that must be removed before quantitative analyses can be
performed; (b) median filter is a common technique that allows the removal of noise
that also tends to preserve edges; (c) the non-local means algorithm is among the best
methods to reduce noise while preserving image features; (d) distance transform can
be used to introduce spatial context into segmentation pipelines; (e) segmented data
obtained using segmentation pipeline available within the LBPM software.

The underlying computational paradigm is based on Fourier transform methods
[24]. While many other reconstruction algorithms have been developed, gridrec
is the primary algorithm that has been in use for fast µCT data over the last
two decades.

3.2 Conventional Image Processing

While the basic material structure is often visually-evident from reconstructed
data, significant post-processing is required to make quantitative inferences. The
majority of this effort is devoted toward (1) enhancing the signal-to-noise ratio;
(2) removing image artifacts such as rings; and (3) image segmentation. Con-
ventional image processing methodologies are typically combined into a data
processing pipeline, which often requires manually tuning for algorithm param-
eters. In digital rock workflows the end goal for image processing steps is often
to segment the reconstructed data into a discrete set of components that corre-
spond to the distinguishable fluid and solid materials within the sample. Detailed
reviews on segmentation pipelines are available [26,32,36]. In this work, we con-
sider a segmentation workflow that is composed from the following algorithms:
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(1) median filter is applied to perform initial noise reduction and generate a
rough segmentation; (2) the non-local means filter is applied to remove noise;
and (3) the distance transform is applied to inform the weight structure and per-
form final thresholding and iso-surface construction; The segmentation routine
is available in the open-source LBPM software package.

The segmentation pipeline implemented within LBPM is illustrated in Fig. 3,
with the reconstructed volumetric data used as the input. Target and background
values are specified to identify the intensity values for the region of interest, which
are determined based on histograms from the image data. The data is then re-
scaled to the interval [−1, 1]. A median filter is used to perform initial noise
reduction, and a rough segmentation is generated by thresholding the resulting
data. A multi-scale algorithm is then applied to further reduce noise in the image.
The original image data is projected onto a coarse mesh by averaging the voxels
in a local region. In this work, the resolution for the coarse mesh was decreased
by a factor of two, meaning that the total number of voxels in the coarse mesh
is reduced by a factor of eight. The non-local means algorithm is applied to
the coarse mesh to further reduce noise, update the coarse segmentation, and
recompute the distance transform. The distance transform determined using the
coarse mesh is projected onto the original fine mesh using linear interpolation
and the original input data is reprocessed using the coarse mesh data to provide
additional spatial context. This multi-scale representation plays a similar role
to that of skip-connections in U-net, but within an algorithm that has no train-
able parameters. Non-local means is applied on the fine mesh, using the distance
from the coarse mesh data to skip calculations that are performed in parts of
the domain that are far from an interface. The distance transform is then recom-
puted on the fine mesh, which is used to determine the final segmentation. The
distance transform is also used for quantitative analysis based on (1) iso-surface
construction using a double-connected edge list (DCEL) data structure; and (2)
computation of scalar geometric invariants using the constructed isosurface. The
entire segmentation and analysis pipeline is implemented in distributed mem-
ory using MPI. By distributing the computations over multiple compute nodes,
time-to-solution can be significantly reduced for segmentation and analysis of
large images.

3.3 Denoising with Deep Learning

Deep learning techniques have been widely applied to image denoising. Given the
success of deep convolutional neural networks (CNN) in image feature extrac-
tion, most deep learning denoising models are CNN based. Several generative
adversarial networks (GAN) have also been developed for this task, where the
generative network is used to generate denoised samples and the discrimina-
tor network is trained to distinguish the generated samples from high quality
input samples (considered as ground truth). Once the loss of the discriminator
is minimized in this zero sum game, the generator can then effectively denoise
the low quality input samples. Compared with traditional approaches for image
denoising, GAN based denoising can reduce the number of manual steps needed
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Fig. 4. Deep learning denoising workflow.

to process data, since traditional approaches often rely on hand-tuning for algo-
rithm parameters.

In our deep learning denoising workflow, as shown in Fig. 4, two deep learning
models are employed to optimize the processing efficiency: 1) Noise2Noise model
[20], which can learn to restore images without ground truth data; 2) TomoGAN
[21,22], which is a generalized adversarial network (GAN) based model that has
demonstrated success in dealing with X-ray imaging. The core neural network
architecture of both models includes the popular UNet for image reconstruction
[30]. Our workflow is implemented as follows,

1. prepare paired input data of high (full reconstruction) and low (partial recon-
struction) quality;

2. train Noise2Noise model on above paired data;
3. train TomoGAN on paired data of low quality input and Noise2Noise output

(served as ground truth);
4. inference based on TomoGAN model with low quality reconstruction data.

There is a one time cost associated with training both Noise2Noise and Tomo-
GAN models, which is incurred when the experimental conditions or material
structure change. Once the models are trained, inferencing with low quality
reconstruction can significantly speed up the process in production.

Practical applications of deep learning for denoising must be considered in
terms of the overall workflow. Particular attention must be paid to the effect on
image quality and the associated effects on the workflow outputs. For example,
for GAN-based noise removal the larger- scale microstructures are captured well,
but the finer spatial frequencies have a tendency to be washed out. The preser-
vation of fine-scale features is a persistent challenge associated with removal of
image noise even using conventional methods, since it is difficult to distinguish
noise from fine-scale structural information. The non-local means algorithm is
often preferred for applications where noise removal must be applied without
destroying fine-scale features [39]. GAN approaches can be further developed
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Fig. 5. Time required for each stage of the fast micro-tomography workflow considered
in this work.

to exploit frequency-domain information to better preserve information about
smaller structures in an image [38]. Hybrid approaches that combine deep learn-
ing with traditional image processing strategies are also possible. In applications
where data quality is of central importance, strategies to augment existing work-
flows with AI must consider the quantitative impact on the workflow outputs. It
is common to apply multiple algorithms in such workflows, and it is natural to
incorporate AI-based approaches where enhancements to data quality and user
productivity can be realized.

4 Performance Benchmarking

Computational benchmarking was performed on the Summit supercomputer and
on local workstations at the GSECARS beamline. Each IBM AC922 Summit
compute node is equipped with two 22-core Power9 CPU and six NVIDIA Tesla
V100 GPU. The compute nodes are interconnected with Mellanox EDR Infini-
band (100 Gb/s) and connected to a 250 PB IBM Spectrum Scale filesystem a
peak read speed of 2.5 TB/s. Data transfers to the OLCF data center were per-
formed using ESnet, a high-performance scientific research network that links
the US DOE national laboratories and other facilities. Globus was used to trans-
fer files from the synchrotron beamline to the OLCF filesystem and measure
the associated data transfer rates [11]. Measurements were also performed for
data transfers between local workstations at the GSECARS beamline, and for
data copies from local workstations to 4 TB hard drives. Data transfer times
are reported in Fig. 5, along with accompanying measurements for data collec-
tion and other computational elements of the data processing pipeline. Error
bars are based on the minimum and maximum bandwidth and the collected
file size, which is 3.9 GB. Measured data transfer rates are reported in Table 1.
Transfers were organized into batches, with multiple images transferred in each
batch. Data movement between the ALCF and OLCF facilities did not present
a barrier to the overall workflow, with the associated costs being less than other
computational tasks within the pipeline.
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The reconstruction step was executed using a local workstation at the APS
beamline from 4–8 June 2018, and was later re-executed on the Summit super-
computer using the implementation available in TomoPy. The total reconstruc-
tion time was ∼138 s, including I/O and pre-processing stages. As illustrated in
Fig. 5, this is longer than the time required to collect a single image, and a single
workstation is not sufficient to keep pace with the rate of data generation. Batch
processing is therefore attractive. Because the time and resources required to
process data was short compared to typical HPC simulations, queue wait times
were not a large barrier, although still significant in comparison to other tasks
within the workflow. Typical data processing jobs have a different profile as
compared to typical HPC workloads, applying data processing workloads at a
large-scale could have a significant impact on the behavior of the HPC scheduler.
In the present context the interaction was complementary, but this might not be
the case if large numbers of data processing jobs were queued simultaneously.

The segmentation pipeline was executed in parallel using Power9 CPU cores
on the Summit supercomputer. 3D images were distributed using a 5 × 8 × 8
process grid with 2403 voxels allocated to each processor. One level of refinement
was used, meaning that the coarse mesh corresponded to 1203 voxels per proces-
sor. The associated parameters required manual hand-tuning to yield acceptable
segmentation results, which did represent a barrier to real-time data processing.
Once segmentation parameters were determined for a particular experimental
setup, acceptable segmentations could be obtained for many volumetric images
(O(100) or more, usually corresponding to several hours of experimental data
collection). Batch processing capabilities on the HPC resources can be used
to accelerate the parameter tuning procedure by reducing time-to-solution for
parameter sweeps. From the workflow perspective, additional study is warranted
to identify optimal parameters more efficiently. Based on the distributed memory
implementation, the turnaround for segmentation was ∼99 s, on par with other
computational tasks. The justification for HPC resources is very strong, since
this remains more than 2× the data generation rate. Without the distributed
memory implementation, the segmentation pipeline would have presented a seri-
ous bottleneck.

Deep learning methods are of interest as an alternative mechanism to reduce
noise and otherwise enhance data quality for experimental data. The required
training and inference times for Noise2Noise and TomoGAN are listed in Table 2.
Training times are reported for 6× V100 GPU, corresponding with the resources
for a single compute node. The one-time cost for each type of material on train-
ing both Noise2Noise and TomoGAN models requires a couple of hours on 1
Summit node. This can be further reduced via data parallel training (already
implemented in the code). While training is a one-time cost, this is significant
in comparison to the overall workflow. Considerable benefits could be realized in
situations where trained networks could be re-used many times for data collected
from a particular instrument. It is not inconceivable that custom networks could
be developed to process data for particular experiments, although such applica-
tions would have a dramatic impact on the overall workflow. Additional study is
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Table 1. Data transfer rates measured during 4–8 June 2018 visit to APS

Source Destination Data transfer rate

Workstation 1 Workstation 2 490–620MB/s

Workstation 2 Hard drive 30–95MB/s

Workstation 2 OLCF Atlas 130–350MB/s

Table 2. Required training time for deep learning networks.

Method Compute Time

Noise2Noise training 6 V100 ∼81 min

TomoGAN training 6 V100 ∼50 min

TomoGAN inferencing 1 V100 ∼160 s

needed to understand the extent to which pre-trained networks can be re-used
for general data processing, and how deep learning workflows could be integrated
into experimental facilities to support novel scientific applications. With the pre-
trained model, inferencing on a streaming data sample can be completed in less
than 3 min and most time will be spent on the partial reconstruction. While
this is longer than then 99 s for the segmentation pipeline, inference required
significantly fewer computational resources. Additional studies are needed to
understand issues pertaining to data quality, particularly for cases where image
processing is being used to support quantitative measurements.

Based on the results reported in Fig. 5, the time required for computational
stages is approximately 5× what is required to collect data. This means that
the minimum lag time between collecting data and generating results is five to
fifteen minutes. A pipelined data analysis routine can be constructed to ensure
that this gap does not grow as the experiment progresses. This is illustrated
graphically in Fig. 6. Note that the time required for transfer data is shorter
than the time required to collect data, so there is not a data transfer bottle-
neck. Reconstruction, segmentation and analysis routines can execute in parallel
using distributed computing resources. For practical reasons, it is attractive to
aggregate the processing steps for multiple images together, since manual steps
were needed to move the data using Globus. Since data is collected rapidly, fully
automated workflows have excellent potential to boost productivity.
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Fig. 6. Distributed computing can be used to pipeline data analysis routines such
that the lag time between data collection and results does not grow as the experiment
progresses.

5 Summary

The computational steps required to support experimental synchtrotron micro-
tomography were reviewed in the context of a digital rock physics workflow.
Relying on a combination of high performance computing and deep learning
methods, a full analysis pipeline can be executed in near real-time. Near real-
time processing provides the opportunity to adjust experimental conditions to
ensure that high-quality data is being collected. Problems in the experimental
setup can be diagnosed in a more comprehensive and efficient way, and challenges
associated with the post-processing of large volumes of experimental data can
be mitigated. Near real-time processing of synchrotron-based micro-tomography
data presents a significant yet tractable computational problem. Effective appli-
cations of parallel and distributed computing can offset the imbalance between
data collection and processing speed, but such interventions are certainly neces-
sary. We find that distributed computing resources are sufficient to provide near
real-time execution for fast uCT. Pipelined execution of workflows allow data
processing to proceed such that results are available to inform experiments with
a reasonable turnaround, approximately fifteen minutes based on batch queues.
Since the data processing jobs are short-running compared to most HPC simu-
lation jobs, they can be efficiently backfilled. Interactive queues are necessary to
visualize simulation results, but often only a subset of data must be visualized.
Manual steps within the data processing workflow, such as parameter tuning,
present a significant barrier. Opportunities to apply machine learning as a way
to reduce or eliminate manual intervention are therefore attractive. Compelling
advantages of AI include the possibility to improve performance and/or reduce
the computational costs associated with noise removal, as well as the possibil-
ity to incorporate elements involving automated data annotation and anomaly
detection.
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Increased adoption of automated workflows and the use of workflow manage-
ment software could provide a significant payoff for experimental facilities. To
obtain high quality image data, multiple computational steps and several differ-
ent algorithms are often combined to remove noise and otherwise enhance image
quality. Due to the fact that user workflows often involve customized routines,
eliminating manual steps is non-trivial but crucial. Since workflows often have
quantitative outputs, AI techniques should be assessed within the context of the
overall workflow so that their effect on these outputs can be properly understood.
Workflow automation is also necessary to alleviate data processing bottlenecks
by reducing the amount of manual steps, and by enabling more scalable deploy-
ment of user workflows. Efforts should also target computational reproducibility
and incorporate metadata collection into workflows. Since a shortage of labeled
data is often a constraint on the training of neural networks, automated creation
of metadata can offer a significant payoff for future AI.
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32. Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D.: Image processing of mul-
tiphase images obtained via x-ray microtomography: a review. Water Resour. Res.
50(4), 3615–3639 (2014)

33. Ushizima, D., et al.: Statistical segmentation and porosity quantification of 3D
x-ray micro-tomography. In: Proceedings of SPIE, vol. 8185, no. 09 (2011)

34. Vo, N.T., Atwood, R.C., Drakopoulos, M.: Preprocessing techniques for removing
artifacts in synchrotron-based tomographic images. In: Müller, B., Wang, G. (eds.)
Developments in X-Ray Tomography XII, vol. 11113, pp. 309–328. International
Society for Optics and Photonics, SPIE (2019)

35. Wang, C., Steiner, U., Sepe, A.: Synchrotron big data science. Small 14(46),
1802291 (2018)

36. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quan-
tifying pore-scale structure and processes in subsurface porous medium systems.
Adv. Water Resour. 51, 217–246 (2013). 35th Year Anniversary Issue

37. Xie, S., et al.: Artifact removal using improved GoogLeNet for sparse-view CT
reconstruction. Sci. Rep. 8, 6700 (2018)

38. Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast
compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–
1321 (2018)

39. Zhang, H., Zeng, D., Zhang, H., Liang, Z., Ma, J.: Applications of nonlocal means
algorithm in low-dose x-ray CT image processing and reconstruction: a review.
Med. Phys. 44, 03 (2017)

https://doi.org/10.1007/978-3-319-24574-4_28


Unsupervised Anomaly Detection
in Daily WAN Traffic Patterns

Scott Campbell(B), Mariam Kiran, and Fatema Bannat Wala

Lawrence Berkeley National Laboratory, Energy Sciences Network (ESnet), Berkeley,
CA, USA

{scottc.mkiran,fatemabw}@es.net

Abstract. Growth in large-scale experiments using high capacity reli-
able networking as part of their design is creating a need for better mon-
itoring and analysis of observed traffic. Network providers need intelli-
gent solutions that can help quickly identify and understand anomalous
behaviors at the network edge, allowing reactions to unexpected traf-
fic or attacks on facilities and their peerings. However, due to lack of
labeled data in network traffic analysis and user diversity, we introduce
novel methods that process very large network datasets quickly for out-
lier identification.

In this paper, we leverage artificial intelligence (AI), network research,
and edge computing to collect and train unsupervised classification algo-
rithms using streaming data pipelines from multiple months of network
flow records. Once trained, individual classifiers quickly observe and flag
alerts in hourly behaviors. Our work describes building the data pipeline
as well as addressing issues of false positives and workflow integration.

Keywords: Network anomaly detection · NetFlow data ·
Unsupervised clustering methods · K-means · Gaussian mixture models

1 Introduction

Large experimental facilities, with their high-speed networks and traffic produc-
tion rates, face enormous data movement challenges in supporting distributed
science workflows. In these wide area networks (WANs), service providers need
reliable solutions that can help quickly identify and understand anomalous
behaviors at the network edge in near real-time, raising alarms and identifying
unexpected attacks [3]. Many traditional approaches used in the security com-
munity for quickly identifying anomalous behaviors in a large wide area network
designed for big data flows, relies on either performance metrics collected from
tools like perfSONAR [9] or characterizing data volume observed in a particular
period [19]. There is a need to develop efficient ways in which anomalous behav-
iors can be recognized quickly in large data volumes in near real-time based on
the WAN network traffic patterns and high packet flow rates.
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Network traffic classification has been extensively studied over the years [23],
but classifying flows based on their behaviors, applications, and quality of ser-
vice is a formidable task. Machine learning solutions can automate some of these
efforts and find patterns to classify ‘normal’ versus ‘abnormal’ behaviors, pro-
viding some insight to security professionals in identifying potential network
threats. Most network intrusion detection systems (NIDS) use flow statistics
and features to build outlier detection algorithms, such as using random for-
est trees [24], fingerprinting [17], and behavioral comparisons. These rely on an
offline analysis of large network traces (or network flow data) by using clustering
to group similar flows together. For example, in studying network traffic entropy
[20] found varying patterns of inbound and outbound traffic on weekdays versus
weekends on real internet service providers (ISPs). Similar characteristics could
be identified in common host connections, flow sizes, and topology used.

Identifying behavior patterns among hosts and how they connect to various
endpoints is a common preliminary approach for anomaly detection in network
communications [6]. Various dedicated solutions focus on identifying important
features such as packet payload, port numbers, protocols [8,21], and classification
techniques to help identify potential threats [25]. However, the lack of labeled
data sets makes it difficult for one to cluster results without knowing what each
of the classes represents and measure the accuracy of classifiers where minimal
information is available [12].

In this paper, we propose to explore unsupervised network traffic classifica-
tion information, based on K-means and Gaussian methods, to address the issues
of unsupervised machine learning for WAN-security. We develop novel methods
to recognize anomalies in each method, by estimating how far the data point is
from each cluster and density information. Specifically, our major contributions
are as follows:

– We propose a novel anomaly finding approach that works with unsupervised
clusters to identify potential outliers. With K-means we calculate the furthest
data point from all clusters and in Gaussian models, we calculate the least
density of data points in each cluster.

– We provide a detailed analysis of two classification techniques - K-means and
Gaussian Mixture Models (GMM), used for the benefit of network traffic
classification. We observed that feature selection affects the anomalies found.

– Our analysis is done on 3 real WAN data centers from January to May 2020,
where we study weekend, weekday traffic patterns.

– We built an extremely efficient data pipeline by pre-processing data for the
machine learning algorithms to use, offline training of the clusters, and online-
anomaly detection.

The rest of the paper is organized as follows: Section 2 describes the back-
ground and literature review, Sect. 3 describes the key points and the motiva-
tion for this work. Section 4 provides the details on the overall methodology
conducted, the data sets used, the feature extraction and the machine learning
approaches explored. Section 5 gives the details of the primary analysis conducted
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for data set visualization. Section 6 illustrates the findings and results. Finally,
Sect. 7 presents the discussion and conclusion of the research.

2 Related Work

Understanding network behavior patterns are crucial to network management
and security tasks. Network traffic classification research has developed many
approaches using statistical, supervised, and unsupervised machine learning
techniques to categorize traffic patterns to understand activity across site end-
points, hours, days, and months.

Understanding security incidents is a classical challenge in network research.
However, processing large amounts of network flow capture in meaningful time
is itself a formidable challenge. Researchers have provided some solutions such
as summary tools for identifying distributions of packet features (IP addresses
and ports) [14], detecting volume surges, or changes in origin-destination [13] to
help isolate anomalies or flow arrival time and packet types [17]. Techniques from
statistical or machine learning solutions have been extensively provided to help
summarize ‘normal’ and ‘abnormal’ traffic behaviors, but often are designed for
specific data sets and network environments [1]. With the growing complexity
of networks and devices themselves, network service providers need intelligent
solutions that can quickly identify and understand anomalous behaviors at the
network edge, raising alarms to prevent unexpected network attacks on their
sites or peerings.

Networks sample packets using monitoring tools, extracting features that
describe the behavior [16,18]. Feature selection can play a significant role in the
anomalies identified [10,22]. Most current work maps traffic profiles to appli-
cations or protocols used [21]. Others have used machine learning to find day
and night patterns to identify potential DDOS attacks, but in all cases, lack of
labeled data makes it difficult to assess the accuracy of the results [7,8,11].

Recent methods used Gaussian Mixture Models to characterize NetFlow data
into two categories elephant and mice flows [11], but showed that flow charac-
teristics differ across the sites involved. Deep learning approaches have achieved
accuracy of up to 96% for clustering [15], but require labeled data.

Compared to current solutions, this paper provides an end-to-end solution for
identifying anomalous traffic patterns from multiple sites and leverages unsuper-
vised machine learning algorithms to help raise alarms. Our work builds a data
pipeline from individual NetFlow recorders, processes these as quick Splunk data
summaries and runs machine learning code to identify potential anomalies. We
also perform offline training and online detection using techniques - K-means,
Gaussian Mixture Models - to show how the classifiers show different perfor-
mances.
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3 Key Points and Motivation

This section discusses our assumptions and study motivation.

3.1 Assumptions

Our goal is to build lightweight classifiers that will identify potential anomalies in
network traffic. We take one hour blocks of sampled NetFlow records and apply
statistical and counting measurements as summaries to feed to the classifiers.
Our work relies on the following assumptions:

– Building ‘normal’ behavior classifiers. Deviations from normal traffic
behaviors or stable measurements can be identified and are interesting to both
the network engineering and security groups because of their unusual char-
acteristics. These deviations are identified via testing against models trained
with traffic observed from normal situations. Examples of deviations might
be bursts of new addresses or ports (both in or out of a site) as well as more
subtle changes like the shape of data measurements. How we identify these
is to a large degree the motivation for this work. Due to the lack of labeled
data and a diverse set of users, we base our approaches on [14] where using
summarizing techniques we will create hourly patterns to train our classifier
as normal behaviors.

– Hourly summaries can help identify morning and afternoon pat-
terns. This assumption relies on the hypothesis that network usage differs
during regular working hours when the users are expected to be more vig-
ilant versus hours in the evening. Since our data sets primarily consist of
the research-based WAN network traffic, the chances of observing distinct
patterns in the hourly summaries in our training data sets are low.

– Offline training for classifiers. We expect to be able to train the classifier
using unsupervised clustering methods (mainly K-means and GMM) using a
data set known to exhibit normal network traffic patterns. Hence, once the
classifier learns what the normal traffic behavior looks like, it can then decide
if a given test data set exhibits normal patterns or if it contains anomalous
behavior.

– Online access to the trained clusters to find patterns on the fly. We
expect that once the classifier is trained offline using the datasets known to
have normal traffic patterns, it can then be used in near real-time to detect a
given pattern exhibiting any abnormal behavior on-the-fly. The classifier then
assesses how far the given test pattern falls from the normal clusters within
a given threshold.

3.2 Intuition Behind Our Methods

Research WANs Versus Commodity WANs. For the initial experiment,
we chose a dataset based on network traffic from the DOE Open Science HPC
Facilities. We illustrate our approach with real NetFlow traffic traces from a DOE
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research WAN (ESnet, www.es.net), across 3 data centers between the months
of January and May 2020. The expectation is that the traffic profile for these
facilities will have less interactive human activity (such as web browsing) which
exhibits a strong diurnal weekday pattern [2], and a far greater proportion of
long duration, high volume data transfers than would be expected in Commodity
traffic [4].

Network Traffic Monitoring Tools. Traffic traces are collected via tools
such as Simple Network Management Protocol (SNMP), sflow, and Netflow.
Some (like SNMP) can be used to collect time-stamped information on CPU,
memory utilization, and interface counters at end-points. Sflow and NetFlow
records provide a local router view and provide details of fine-grained traffic
view including key features such as protocols (e.g. TCP, UDP, etc.), interfaces,
source, and destination IP addresses and even flow speeds [5].

Unsupervised Clustering Methods for Anomaly Finding. ESnet has a
unique perspective with regard to the behavior of network traffic in and around
large multiuser facilities. Anomaly detection in data sets can be used for both
security as well as traffic engineering. The selection of data sources is dedicated
high-performance computing within three large scale office of science computing
sites named Site-1, Site-2, and Site-3 for paper anonymity.

3.3 Unsupervised Clustering Algorithms

In this section, we review the clustering algorithms we use to build our classi-
fiers for unlabelled traffic data. In particular, reviewing K-means and Gaussian
mixture models.

K-means Clustering Technique. Given a set of data blobs, the K-means
algorithm can quickly label these into clusters such a way to closely match rel-
evant data points together. This is calculated based on iterations of distances
between the clusters to form circular shapes.

Why is this Good? K-means is a good approach to explain how data sets with
seemingly unrelated features can be grouped, just based on their empirical dis-
tances.

Gaussian Mixture Models (GMMs). Gaussian mixture models work to find
multi-dimensional Gaussian probability distributions that best fit training data.
Based on calculating density estimation and probability that a data point belongs
to a cluster, this method works well to generalize non-uniform data.

Why is this Good? In K-means, there is no intrinsic probability measure or
uncertainty in the clusters. GMMs are better to characterize different shapes of
the data which do not exist as clear circles.

4 Methodology

We propose to develop an end-to-end traffic classification mechanism that will
work in three phases (Fig. 1): First, the Trace collection phase uses data pipelines
that create hourly summaries of NetFlow records for each site from the routers.

www.es.net
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Fig. 1. Overall methodology of recognizing anomalies in Netflow characteristics.

Second, an offline learning phase will use clustering methods to group similar
traffic flows together. To verify this behavior we will divide our data into training
and test data and compare the results found by the classifier. And lastly, we will
deploy these classifiers with the pipelines to perform online clustering as data is
collected. We use 3 data centers as we anticipate different traffic patterns.

4.1 Trace Collection: Building Streaming Data Pipelines

Phase one consists of trace collection and data reduction. ESnet sees, in aggre-
gate, between 20–50 million net flow records per hour on average which follow
a classic weekday, diurnal pattern. As shown in Fig. 2, this data is gathered
through a set of flow collectors and sent to a splunk instance which indexes and
stores the records in a performance searchable format. Flow data at ESnet is
sampled at 1:1000 before being sent to a collection which plays an important
role in the type of analysis that is possible. Values that can be approximated
by large sample sets work well, but exact enumerations are not possible. For
example, looking at the exact number of packets to port 80/tcp, or if a specific
IP has been seen are not possible with sparsely sampled data, but estimating
the ratio of 80/tcp vs. 443/tcp is possible.

To analyze the classification techniques we used data sets from three DOE
data center sites, we will be referencing them as Site 1, Site 2, and Site 3 in this
paper. For this, the raw data is filtered for site Autonomous System Number and
or network subnet to define a site or region of interest. In an effort to reduce the
effects of random scanning and background noise/radiation an additional filter
was imposed which removed records containing less than 64 bytes.

This filtering reduces the data volume down to around 1.3 million records
per hour. The data summary process walks through this data, breaks it into one-
hour blocks, and generates a set of summary statistics based on counting and
heuristics for each block. The reduction in data volume for the summary data
set (millions of flow records down to one set of statistical/count measurements)
lets us process large windows of data for the model building and comparison in
very little time.
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Fig. 2. Workflow for data analysis.

Data summary consists of the one-hour measurement blocks, features con-
cerning byte counts, packet counts, unique server IP, and unique server port
are broken out into direction (inbound vs. outbound) as well as protocol (TCP,
UDP, and ICMP). The standard deviation for byte and packet counts are bro-
ken out similarly. Flow records are combined based on the heuristic that the
lowest port represents the service which is based on the classic fixed service port
and ephemeral client-side port. This is not always true in terms of dynamically
generated services and data transfers (for example Globus GridFTP), but since
we are looking at aggregate behavior across a large number of sessions these
ephemeral services should average out.

A feature is a property of a data sample, where average, mean, median, and
standard deviation can also be features. Unsupervised feature extraction helps
identify patterns from features in trace data.

Table 1. Features unsupervised clustering from hourly NetFlow summaries.

Type of feature Feature description

Byte Count (TCP, UDP, ICMP) Integer

Packet Count Inbound (TCP, UDP, ICMP) Integer

Packet Count Outbound (TCP, UDP, ICMP) Integer

Std Dev Bytes Inbound (TCP, UDP, ICMP) Float

Std Dev Bytes Outbound (TCP, UDP, ICMP) Float

Std Dev Packets Inbound (TCP, UDP, ICMP) Float

Std Dev Packets Outbound (TCP, UDP, ICMP) Float

Unique Server IP Inbound recorded this hour Integer

Unique Server IP Outbound recorded this hour Integer

Unique Server Port Inbound recorded this hour Integer

Unique Server Port Outbound recorded this hour Integer

Hour Date-hour

Weekday Date-wday
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(a) Site-1. (b) Site-2.

(c) Site-3.

Fig. 3. Traffic Distribution across all sites in months Jan-May 2020.

Training and Test Data. We use January and February 2020 data as training
data, and March-May 2020 as test data. The TCP, UDP, and ICMP patterns
are shown in Fig. 3 over the 5 months.

4.2 Offline Learning in Classifiers

For phase two, we use K-means and GMM methods to train our classifiers into
unsupervised clustering methods. Figure 4 shows how the clusters are formed on
training data. The test data is then grouped into one of the clusters.

4.3 Online Anomaly Finding

In phase three, we use K-means and GMM models to perform anomaly findings.
Because of the lack of labeled data, we cannot specifically identify an anomaly
unless all anomalies are grouped in particular clusters. To counter this, we define
an anomaly that falls far from the ‘normal’ behavior in the training data sets.
This is calculated in each clustering technique separately as shown in Eqs. 1, 2.
We calculate an anomaly based on how far the data point is from the centroid
and the density of the cluster. K-means assumes circular clusters, where we
calculate centroid and radius of the original clusters. In GMM, we use Gaussian
distribution to calculate the probability of each data point and list the least
probability as a possible anomaly.
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Fig. 4. Calculating anomalies based on how far the point is from the cluster.

In K-means, we can calculate the distance to each cluster by,

J =
k∑

j=1

n∑

i=1

∥∥∥x
(j)
i − cj

∥∥∥
2

(1)

where clusters of k groups can assign data points based on the euclidean
distance function. The higher the distance from all clusters, the higher the prob-
ability of the data point to be anomalous.

For calculating anomalies with GMMs, we use the expectation and maxi-
mization method to calculate the probabilities of a data point belonging to a
cluster. This probability can be defined as,

w
(i)
j =

gj(x)φj∑k
l−1 gl(x)φl

(2)

where gj(x) represents the multivariate Gaussian of each cluster and φj rep-
resents the prior probabilities. These can be printed out to denote an average
probability that they belong to a cluster. We use a threshold of −0.5 to denote
that this is a very low probability that the data point belongs to a cluster and
label these as anomalies.

5 Preliminary Analysis

We visualize the data using PCA (Principal Component Analysis) and t-SNE
(t-Distributed Stochastic Neighbor Embedding) to represent a high-dimensional
dataset (38 features, shown in Table 1) in a low-dimensional space of 2, 3 dimen-
sions. Figure 5 shows the Site-1, Site-2 and Site-3 divided into training and test
visuals. The sub-figures show different behaviors in the months, particularly in
test data, impacted with COVID-19 work changes.
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In contrast to PCA which simply maximizes the variance, t-SNE creates
a reduced feature space where similar samples are modeled by nearby points
and dissimilar samples are modeled by distant points with high probability. We
got optimum results and the KL divergence was minimum for the 3 dimensions
reduction (n = 3) of the original data set with t-SNE algorithm with perplexity
=40 and 300 iterations. For Site-3 we see a tight clustering for weekdays, but
from March-May’20, it shows a diverse traffic profile in Fig. 5, showing that the
profile does change and would be picked up as anomalous.

(a) Site-1 (b) Site-2

(c) Site-3

Fig. 5. TSNE visualization of Training vs Test Data of all Sites.

6 Experimental Results and Discussions

6.1 Silhouette Analysis for Optimal Clustering

We perform a silhouette analysis to study the optimal number of clusters in
the training and test data sets. This informs the unsupervised clustering results.
Figure 6 shows these measures of how close each point is in one cluster to points
in neighboring clusters with the maximum value gives the optimum number of
clusters. We find that optimal clusters in Site-1 are 3, Site-2 and Site-3 is 2 for
training. We also performed a similar analysis for test data, showing that there
is considerable variability in characteristics.
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(a) Training Data. (b) Testing Data.

Fig. 6. Silhouette analysis to gain optimal clusters in the data.

6.2 Clustering Weekdays and Weekends in Training Data

(a) K-means on Training Data. (b) GMM on Training Data.

Fig. 7. Listing weekdays recognized in each cluster in Site-1.

(a) K-means on Training Data. (b) GMM on Training Data.

Fig. 8. Listing weekdays recognized in each cluster in Site-2.

We listed how the days were being recognized in each of the clusters. Figure 7
shows that K-means and GMM both cluster data differently and there are no
distinct patterns between the weekdays. Comparatively in Figs. 8 and 9, we do
find that there are individual clusters that can identify specific days of the week
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(a) K-means on Training Data. (b) GMM on Training Data.

Fig. 9. Listing weekdays recognized in each cluster in Site-3.

such as Tuesdays in Cluster 0 in Site-2, and Saturdays in Cluster 1 in Site-3.
However, since these also appear in other clusters, it is difficult to run test data
and measure this assumption. This shows that the clusters selected in training
data are insufficient to recognize individual days in the test data across all sites.

6.3 Identifying Outliers in Test Data

Figure 10 shows the representation of the test data sets with the training data
clusters based on K-means and GMM results. In Fig. 10b, we witness that some
behaviors in April and May are recognized as anomalies. As GMM calculates
anomalies based on ellipsoid density, it recognizes lesser anomalies that K-means
which uses only centroids and cluster density to calculate anomaly boundaries.
In Fig. 10d, most of the March and May data sets are recognized as anomalous
behaviors, in Fig. 10f, nearly all March and May are recognized as anomalies.

The results are summarized in Fig. 11 which shows total anomalies in each
site’s behavior. GMM is able to recognize fewer anomalies and we know from
background information that there were no anomalies recorded in the real
dataset. This is an unsupervised technique that lists how many records fall out-
side the common clusters formed in the training data sets, and because the
behavior patterns changed in the months of March onwards these fall outside
the clusters formed.

6.4 Impact of Selected Feature Discretization Using Domain
Knowledge

Feature discretization takes a subset of features (knowledge-informed) in the
data summary object for training and testing rather than the entire object. This
not only gives a much better focus on the type of anomaly to look for, but also
allows the analyst to better understand what specifically has changed in testing.

Specific feature selection is typically driven by the combination of fields that
contain data related to the characteristic to measure and are informed by feed-
back from a domain expert. Individual fields are defined in Table 1 and can
be categorized into data volume (bytes and packets), connections (host, port,



252 S. Campbell et al.

(a) K-Means Site-1. (b) GMM Site-1.

(c) K-Means Site-2. (d) GMM Site-2.

(e) K-Means Site-3. (f) GMM Site-3.

Fig. 10. Plotting all sites training and test data. Colors present: March (green), April
(blue), May (red). Others colors (yellow, purple) are training data clusters. (Color
figure online)

Fig. 11. Total anomalies at each Site during March–May ’20.
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direction), and descriptive statistics of the data volume. An example would be
the count of unique outbound network addresses. This can be captured by the
features: ‘ServIPOut’ (for TCP, UDP, ICMP). A more complex example might
have many more fields. Training and test groups are generated using the same
ratios as for K-means and GMM.

Fig. 12. Feature discritization sample showing training (blue), test (orange) data.
(Color figure online)

Training data is normalized via MinMax to prevent biases in clustering from
large values, then data dimensionality is further reduced via PCA. After running
through GMM we end up with a set of matrices that hold (amongst other things)
labels for cluster assignment as well as predict the posterior probability of each
data point. Since cluster assignment is driven by the probability that a data
point belongs to a cluster, a simple threshold test can be used to identify low
likelihood events.

Outlier Detection. Represented graphically, a 2D view of train and test clus-
ters can be seen in Fig. 12. Here training data is in blue diamonds and test data
in orange circles. The usual color per cluster is not used here since we are look-
ing at the probability of assignment to any cluster rather than the actual cluster
membership. Outliers for test data are in red triangles and for completeness
outliers in the training data, are in green squares. As mentioned above, outliers
identify when the assignment probability returned by GMM clustering is below
a threshold. More detailed information about Fig. 12 will be found in the next
section.

Addressing Field Decomposition. Knowing that there are outlier elements
in the test data can be informative - in this case, we can identify the outliers
as outgoing IP services since both the x-axis (PCA-1) and y-axis (PCA-2) are
composed of these features. To get greater details it is necessary to examine the
PCA eigenvectors in more detail.
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index: [‘ServIPOut: 1’, ‘ServIPOut: 6, ‘ServIPOut: 17’]

X: eigenvalue: 0.035 percent: 0.5484 coeff: [-0.979 -0.188 -0.074]

Y: eigenvalue: 0.022 percent: 0.3407 coeff: [-0.085 0.047 0.995]

residual percent: 0.11081

Here ‘ServIPOut: 1’, ‘ServIPOut: 6’, ‘ServIPOut: 17’ represent the count of
unique external destination addresses during the 1 h sample window. In terms
of how they relate to the coordinate PCA axis seen in Fig. 12 we look at the set
of weights or coefficients assigned to each component eigenvector in the figure.
The text above defines the various weights assigned for each of the values, so in
this case we can see that the singular majority of the x-axis (first component) is
ICMP (−0.979) and the y-axis is UDP (0.995).

The outlier test data centroid around x= 0.85 is an interesting artifact worth
understanding. The outlier test data represents two individual UDP scans that
happened in the same week in late April directed at Site-1. Examining the orig-
inal flow data we see two reasons why this ended up in the data. First, the byte
sizes for the per packet scanning was above the threshold which defined back-
ground radiation described in Sect. 4.1. Second, the number of addresses and
destination ports covered in the scan was 2–3× larger than what is typically
seen in scanning during the training period.

In order to automate the analysis of traffic data, we look at the set of assign-
ment probabilities returned from the training model. Looking at average and
variance for the set provides a naive measurement of how good the model fits
the test data in a general sense, while skewness and kurtosis provide a measure
of asymmetry and the presence of outliers from a normal distribution.

7 Conclusions

In this paper, we analyzed traffic profiles and used these to predict anomalous
traffic patterns. In security research, we assume that daily patterns are enough
to recognize anomalous behaviors as we classify based on the hour of the day.
However, with the changes in COVID working patterns, this assumption did not
hold as most behaviors in the test data were labeled as anomalies, even when
they were not.

Further our unsupervised clustering technique proved useful to find outliers
in unlabelled data sets. GMM was able to provide better results than K-means
which assumed a more uniform circular pattern of characteristic profiles, finding
more false anomalies.

In the future, we will be deploying additional online classifiers to collect
anomalies at each site’s edge. Further, these techniques will be adapted to work
with lower-level granular data. For example to find the reasons why certain data
points are considered outliers such as a new site appearing or a unique transfer
size which has never been done before. Our results show the potential to be
deployed across many other ESnet network peerings and points of presence in
DOE.
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Abstract. The current focus on artificial intelligence and machine learn-
ing in the scientific community has the potential to greatly speed up
discovery. In this article, we explore what a “smart facility” would mean
for materials science. We propose to capture meta-data at every step
of an experiment, including materials synthesis, sample production and
characterization, simulation, and the analysis software used to extract
information. Although most of this information is captured in various
institutional systems and staff logbooks, more insight could be obtained
by connecting this information through a system that allows automation.
AI-enabled processes built on such a system would have the potential
of making experiment planning easier and minimize the time between
experiment and publication.

Keywords: FAIR data · Machine learning · Artificial intelligence ·
Smart facilities · Connected instruments

1 Introduction

We live in a society where the devices that support our daily activities are increas-
ingly connected. Several vendors are offering platforms that allow us to remotely
control household devices, from light bulbs to doorbells, some of which use machine
learning for greater efficiency. In contrast, instruments that support materials sci-
ence are mostly disconnected. The life cycle of a well-planned scientific experiment
is an endeavor that requires the use of several devices in an intrinsically connected
process. Recognizing this is essential for scientific user facilities like neutron and
x-ray facilities, where sample preparation is generally not done on site.
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Establishing a common data framework for analytics is both particularly
important and challenging for science. The sources of information that support
scientific discovery are often very diverse, coming from complementary methods
to address particular issues. In contrast, smart home systems easily generate
a large amount of training data through the simple fact that we interact with
these systems on a daily basis. If the picture of every single person ringing the
doorbell is taken, or if every tweak of our smart thermostat is captured, it is
much easier to develop training data. Although scientific data is more complex
and diverse, there is something to be learned from the approaches followed by
industry to develop consumer systems. Several efforts are underway to develop
connected systems involving large numbers of data sources beyond a simple
household. Those efforts cover areas such as smart neighborhoods interacting
with a local electricity grid [1] to intelligent transportation systems [2]. Using
artificial intelligence (AI) and machine learning to support scientific user facilities
has recently been the topic of a roundtable of domain experts organized by the
U.S. Department of Energy [3]. In this position paper, we use the example of
interfacial studies of energy storage materials as a use case for envisioning an
integrated and analytics-ready system to support materials science and help
scientists plan experiments more precisely and interpret data more efficiently.

2 The Experiment Life Cycle: An Example
from Electrochemistry

A scientific endeavour is inherently one of planned execution. One postulates
a hypothesis, devises a verification experiment, conducts that experiment, and
draws conclusions that will inform the next step to be taken. All these activities
are recorded to ensure the correctness of the final interpretation. To this day,
the paper logbook has a special place in science. Not only do scientists capture
their work in them, laboratory instruments often have their own dedicated log-
book to record how they were used and by whom. Compounding the problem of
making sense of all these logbook entries, science is intrinsically collaborative.
Verifying a given hypothesis may require the work of several researchers, in mul-
tiple laboratories and using a variety of instruments, each with their own way of
capturing data and notes. Even in an era where most scientific activities require
a computer, the paper logbook is still the most common way of capturing the
thoughts of scientists, and therefore the relationships between the different pieces
of information gathered in this collaborative process. Capturing this information
in a data system would provide rich meta-data to help automate and speed up
the extraction of science from measurements.

The study of energy storage materials using neutron reflectometry lends itself
well to this discussion, as it is a research topic that touches several disciplines and
exemplifies the challenges outlined above. Specular reflectometry [4] allows us to
study the layered structure of thin films as a function of depth at the nanome-
ter scale. Neutrons, being sensitive to light elements and having a low absorption
cross-section formost elements, are an excellent probe for in situ characterization of
energy materials [5–9]. This is especially true because challenges in energy storage
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involve materials interfaces. A good example is the study of the solid-electrolyte
interphase (SEI) formation, the protective layer that forms at the surface of an
anode as it is cycled, the full understanding of which remains a challenge [10].

Studies of electrode materials involve multiple fabrication and characteri-
zation steps, even in cases where the primary measurements are made using
neutron reflectometry. Figure 1 depicts the life cycle of a typical neutron study
of anode materials. The thin films are grown in a magnetron sputtering system
where high voltage power, vacuum condition, and gas environment are controlled.
Depositing a layer of material requires acquiring or fabricating a target for the
deposition system, and the amount of deposited material is estimated using an
embedded quartz microbalance. Once a film deposition is complete, it is charac-
terized using either neutron or x-ray reflectometry to assess quality before use
in the planned in situ experiment.

During an in situ electrochemistry experiment using neutron reflectometry,
the thin film sample under study is placed in an electrochemical cell and hooked
up to a potentiostat. Neutron reflectivity is then measured as a function of the
state of charge of the cell in a series of constant voltage steps. The interpretation
of the results involves the analysis of both the neutron and electrochemistry data.
The latter is used as a constraint to inform the modeling of the former.

In parallel to the reflectometry measurements, sister samples are assem-
bled in coin cells to be cycled in chemical laboratory potentiostats. This allows
researchers to gather electrochemical data and cycle cells over a time period much
longer than the two or three days generally allotted to a typical neutron reflec-
tometry experiment. Such sister samples are used to perform complementary
measurements to assess the stoichiometry at the electrode surface. For instance,
a test electrode assembled in a coin cell can be brought to a given state of charge,
disassembled, and studied with x-ray photoelectron spectroscopy (XPS) to iden-
tify the types of chemical species contributing to the SEI as a function of state
of charge. The final conclusions of a study of energy storage materials using
neutron reflectometry will therefore rely on a global interpretation of both the
data acquired during the neutron measurements and the complementary data
acquired in the chemical laboratory. The proper interpretation of all this data
crucially relies on the expertise of scientists in both the chemical and scattering
fields, and requires precise bookkeeping to properly map this rich data landscape.

Thin films are generally modelled as a stack of layers, each with a thick-
ness, a scattering length density (SLD) value that relates to the composition of
the layer, and a roughness parameter that characterizes the interface between
two adjacent layers [4]. The films prepared prior to an experiment always have
a certain degree of variability that depends on the operating conditions of the
deposition system. We aim at producing multiple identical samples, but each
layer may have a slightly different thickness or composition from sample to sam-
ple. When conducting studies of energy storage materials, this variability of the
prepared thin films is important and needs to be taken into account. Varia-
tions within a single experiment deserve more attention. This is especially true
because a potentially large number of sister samples may be used for various
purposes throughout an experiment. The quality of each film must therefore be
understood to ensure that the proper conclusions are drawn. Although these
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Fig. 1. Overview of the life cycle of a study of energy storage materials using neutron
scattering. A typical neutron scattering experiment is usually the culmination of a long
process of materials acquisition, sample production and characterization, and careful
planning. All these activities are generally captured in separate systems and would
benefit from being linked.

issues generally do not prevent us from achieving our scientific goals, each of
these need to be dealt with. What are the parameters that made a sample dif-
ferent? Was the microbalance in proper working order during the deposition?
Who made the sample? What was the quality of the vacuum when the samples
were made? What was made in the chamber before this sample and did it leave
impurities behind? Finding answers to those questions would be greatly more
efficient if tools were in place to cross-correlate our measurements, help in the
data analysis, and help recognize outliers.

Scientific data does not exist in isolation. Capturing and understanding how
data sets relate to each other is important in order to draw sound conclusions.
Machine learning is a particularly good tool to find correlations in rich data, but
whether it is analyzed by hand or through a machine learning enabled process,
the relevant data needs to be captured first. All these questions could be readily
answered if all the information kept in our logbooks were captured in a linked
data system. The information in our logbooks capture both intent and data
interpretation. They not only shed light on what we tried to achieve, but how
we achieved it and whether it succeeded. In essence, it is crucial meta-data that
needs to be linked to the measurement data itself. Capturing the end-to-end
scientific life cycle is essential in accelerating scientific discoveries.

3 A Data Infrastructure to Map the Scientific Method

The FAIR principles [11] of Findable, Accessible, Interoperable, and Reusable
data are now well established in the scientific community. The challenge in cap-
turing the end-to-end scientific process resides in determining what requirements
need to be fulfilled to adhere to the FAIR principles. Modern instruments, espe-
cially in the context of scattering user facilities like the Spallation Neutron Source
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(SNS) and the High Flux Isotope Reactor (HFIR) at Oak Ridge National Labo-
ratory, already attempt to capture instrument parameters when acquiring data.
Although such an approach succeeds at capturing a measurement completely, it
rarely captures either intent or the full description of the sample and its state.
The emphasis is on the measurement device, and information about the mea-
sured sample and its environment is often lacking.

In the electrochemistry use case described above, in the context of exper-
iments conducted at SNS, although the measurement is completely described,
the information about which sample was measured is missing. Such information
is only captured in a logbook at the instrument. In addition, the electrochemical
information [12] (the applied potential and the measured current as a function of
time) is also captured in a separate system. That data, crucial to the interpreta-
tion of the neutron measurements, is not at all linked to the reflectometry data. It
has to be copied from a separate system, interpreted separately, and cross-linked
through file names and entries in the experiment logbook. In this situation, data
interpretation is time consuming and the typical time to publication is on the
order of a year.

Analysis based on machine learning models trained on previous measure-
ments could also help us control experiments more efficiently, a process that
would improve in efficiency as researchers learn more about the system under
study. The shortcomings in combining related data sets also make it such that it
is nearly impossible to use previous measurements to help automate an exper-
iment. While data sources are available to make live decisions about how to
conduct an experiment possible, the lack of integration makes it impossible.
Capturing the scientific process as it develops would allow us to have all the
knowledge necessary when the neutron experiment starts. This would not only
allow better experiment planning, but it would also allow researchers to mod-
ify their experiment as it proceeds. As the electrochemical and neutron data
are acquired, a smart system could use this information to identify important
experimental parameters such as identifying which state of charge to investigate
and how long to measure them for.

Several minimal requirements can be identified to fully capture a multi-
technique experiment of the likes of electrochemical studies involving neutron
reflectometry. The following is not intended to be a complete list of what a
smart laboratory should provide, but points out gaping holes in the current way
scientific data is captured.

3.1 Capturing Sample Provenance and Custody Chain

Smart and connected laboratories need to embrace provenance from the moment
an experiment begins. We pointed out the fact that an experiment really starts
when acquiring materials to synthesize samples. Scientists reporting results in
the literature often specify the vendors from which they acquired materials.
This is important for reproducibility. Reporting and utilizing such information
could be made easier by realizing that much of the scientific activities are sup-
ported by operational processes that hold such valuable information. Materials
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are acquired through a business process where vendor information is captured.
This information is linked to a specific project through a funding account num-
ber. Furthermore, larger laboratories like ORNL have databases of chemicals,
complete with custody information. All this valuable information is usually lost
once the acquired material is put to use. Without breaking privacy rules, it would
be possible to capture such information to help automate interpretation further
down the scientific process.

Sample fabrication would also benefit from a record system to follow a sam-
ple’s use. User facilities like SNS and HFIR already have systems in place to
record all samples to be measured. Each sample is precisely described and tagged
with a unique identifier and a bar code before being allowed to be used. This
information is generally, but not always, captured in the neutron data files pro-
duced at ORNL. The same should be done for materials synthesis and sample
production. For a given sample measured at SNS, researchers should be able to
look up where it came from, how it was produced, and with which materials.
Once a sample is uniquely identified, it would be possible to look up whether it
has been measured using other experimental techniques.

For this to be feasible, capturing the custody chain is essential. This goes
beyond simply knowing which employee handled a sample. If each instrument
and glove box were uniquely identified with a bar code, it would be possible
to follow a sample from the moment it came out of the sputtering chamber
all the way to when it was disposed of. Such information can be crucial. If a
glove box has a higher water content, or if a previous user left impurities in a
vacuum chamber, those are all information that can improve the interpretation
of a measurement and prevent wrongful conclusions.

3.2 Complete Recording of Experimental Data and Processing

Most scattering user facilities are focused on developing the infrastructure needed
to support the instruments they provide to their community. In order to develop
an infrastructure that maps the end-to-end process of a scientific experiment, we
need to ensure that all the relevant data necessary to interpret the measurements
are properly stored and readily accessible.

User programs already lend themselves well to developing such an infras-
tructure. The SNS and HFIR facilities have several linked systems in place to
support their program. The allocation of beam time to users is done through a
peer-reviewed experiment proposal process. Before being approved, users sub-
mit a technical description of their experiment, including which ancillary devices
they may need. They also need to describe the samples they will study. Once
they arrive at the facility, they need to check in their samples, which will each
be labelled with a unique bar code to ensure proper processing and disposition
once the experiment has ended. In this case each experiment’s unique identifier
is used to link data together.

At ORNL beam lines, neutron data is stored on a facility file system in the
NeXus standard format [13]. The NeXus format is a good example of a data
format that aims at completeness in capturing scattering experiments. NeXus
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is developed by an international collaboration of facility scientists and software
engineers to provide a common data format for neutron, x-ray, and muon exper-
iments. It is used by the neutron facilities at ORNL and around the world.
The NeXus files contain the neutron data itself and time series logs of all the
process variables describing the instrument during the measurement process.
Those include motor positions, information about velocity selectors, and data
acquisition information describing how the measurement proceeded. It also can
accommodate information related to the experiment itself, such as the experi-
ment identifier and the sample identifier.

Once written to disk, each data file is submitted to a post-processing work-
flow [14]. This workflow takes care of coordinating jobs to catalog the raw data,
process the data to be ready for consumption by the end-user, and catalog the
processed data. The cataloging is done through a service developed in-house [15].
It captures the data location and meta-data, which it makes available to other
applications. In a second step, the neutron data undergoes a transformation pro-
cess (called data reduction in the neutron community) that takes the data in
instrument coordinates and produces data in physics units that can be analyzed
by community software. Although standards do exist, such as the CanSAS for-
mat [16] for small-angle scattering data, most data sets are not self-described,
often saved in multi-column ASCII formats. Those data sets are also cataloged.
Capturing this workflow is crucial in our vision of a fully integrated system where
the output of each step in an experiment process is available to the next.

What is often missing from the data captured in NeXus files is complemen-
tary data acquired in situ. In our electrochemistry example, this means that
the current and voltage information acquired while cycling our cell during the
reflectrometry measurements is not captured in the raw data file. This data is
generally written to disk on the computer that runs the potentiostat software
and needs to be transferred manually. This data should be stored on a central
system with enough information to tie it to the experiment. At a minimum it
should be linked through the experiment’s unique identifier, and it should be
formatted in a way that is usable for consumption in analytics processes such as
those used to establish a machine learning training set.

The modeling and analysis results should also be treated as data sources
and captured. To be useful in machine learning processes, these would need to
be captured with full provenance information. The same principles should be
applied to all software used to produce data. In addition to capturing models
that represent the measured data, one would need to capture how such models
were obtained, including which modeling software was used, and which starting
parameters were used. Fully capturing the provenance trail of how the data
was analyzed is crucial in establishing fully connected instruments in a smart
facility. Establishing standard formats for interoperability is also crucial. This is
in addition to ex situ characterization data that may have been acquired before
the experiment takes place. All this data should be properly captured and linked
to enable end-to-end analytics.
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3.3 Semantic Processing to Capture Intent and Results to Inform
Interpretation

Mapping domain knowledge and experimental results to a graph network of
domain data could accelerate discovery. So far we have stressed that a complete
recording of instrument data and provenance is crucial to establishing smart
facilities. To be useful in the context of automated analytics, capturing all the
data produced to support a given study is necessary but in itself insufficient.
That data needs to be enriched with relationship information that links the
various data sets together and gives them context. This means more than tying
together all the data from a given experiment with a unique identifier.

An often overlooked aspect of laboratory experiments, especially those con-
ducted at user facilities, is the human factors of the process. Although visiting
researchers plan their experiments in advance, setting up a new experiment once
getting to the facility is always hectic even for seasoned practitioners. The con-
sequence is that asking users to enter meta-data information is often difficult.
Proper incentives in the form of an easier and more complete data analysis is
probably not enough to ensure data completeness.

For this reason, we foresee that a second step to data ingestion providing
automated enrichment is necessary. Such a process would greatly be helped
by establishing processes to map the complex knowledge relationships between
existing results and data. In addition to capturing experimental data and cap-
turing a rich description of the relationship between data, establishing context
based on previous results is important.

There are several examples of semantic analysis of publication data that
could provide a foundation for such an effort. The SemMedDB database of
semantic predications for medical publications is a great example from the
medial field [17]. Closer to our electrochemistry example, Springer Nature and
researchers from Goethe University recently published a book reviewing recent
publications on lithium-ion batteries that was entirely written with machine
learning [18]. The approach followed a workflow that involved clustering, extract-
ing, and summarizing algorithms applied to scientific literature. Coupling such
an approach to meta-data rich experimental data could greatly speed up mea-
surement interpretation. This would also enable us to integrate with external
sources of information such as the Materials Project [19,20].

4 AI-Enabled Smart Beamlines

The environment we have outlined above would greatly minimize the time needed
between the conception of an experiment and publication of results. More impor-
tantly, it would allow for the use of artificial intelligence and machine learning
at multiple points in the process. A fully connected neutron reflectometer, for
instance, would allow the use of machine learning to inform experiment plan-
ning in real time. The complete archive of existing neutron and characterization
data, along with simulation data, could more easily be combined to develop
machine learning models in advance of the allocated beamtime. In the case of
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electrochemistry, this could mean that we would be able to use machine learning
to interpret both the electrochemistry and reflectometry data as it is acquired
to identify states of charge of interest, where longer or more detailed measure-
ments would be beneficial. Such an approach would allow us to better leverage
the simulation work that is usually done as a separate effort [10]. The study of
electrode materials using reflectometry is usually a multi-step process that alter-
nates between driving current into the system to reach a specific state of charge,
followed by a neutron reflectometry measurements at that state of charge once
equilibrium is reached. Being able to use machine learning to interpret the elec-
trochemistry data to better identify the states of charge to be measured would
immensely improve the impact of such measurements. The work of Browning
and coworkers [8] (see their Fig. 6) shows a good example where the current
and voltage curves show changes that do not have corresponding reflectome-
try measurements. In this case, a better integration between a time-resolved
measurement of neutron data and the electrochemical processes involved would
provide important data that is currently missed. For this to be possible, several
capabilities need to be put in place.

4.1 Access to Flexible Workflows

The ability to dynamically configure workflows is needed to allow for AI-enabled
beamlines. Figure 2 depicts an example of a workflow for a smart reflectometry
beamline. In addition to the automated data reduction currently available, an
infrastructure is needed to plug in data analysis processes. In the case of reflec-
tometry, this would include automated processes for the extraction of thin film
structure parameters. This data would need to be fully captured in our data
infrastructure. This modeling step would be followed by a machine learning pro-
cess leveraging previously obtained data to obtain both a structural interpreta-
tion of the system and a suggestion for the subsequent measurement. Putting
such an infrastructure in place would allow for a more automated experimen-
tal procedure where data-informed decisions are made on the fly, and where
experiment planning blends in with experiment execution.

4.2 Smart Laboratory as a Data Hub

To seamlessly integrate instruments, the scientific data they produce, and work-
flows to allow automated measurements based on prior knowledge, a shared
infrastructure between laboratories needs to be put in place. Several projects
that aim at integrating data sources into a federated system, like DataFed [21]
and PaNOSC [22], have started to tackle these issues. Although enabling individ-
ual devices to access central storage and leverage compute resources is essential,
the ultimate goal would be for instruments to recognize the resources they have
access to according to the context they are in. This is especially true for sample
environment devices that move from laboratory to laboratory. Analogous to the
Google Assistant’s Home Graph [23] that maps out devices defined by type and
traits within a house, we envisage a laboratory setting where functionality and



266 M. Doucet

Fig. 2. Overview of a smart beamline workflow. The key aspect of a smart workflow is
the live feedback during acquisition. A fully integrated workflow would allow the exper-
iment to be guided by prior information obtained from complementary characterization
methods, simulation, as well as previous neutron measurements.

resources can automatically be made available by the simple fact of connecting
an instrument to a particular laboratory. In the case of neutron reflectometry,
the act of adding the potentiostat to the beamline within the context of a given
experiment would enable workflows and easy access to pre-trained machine learn-
ing models. As more information is put into the system, and as more researchers
use the system and thus put knowledge into it, more capabilities would automat-
ically be made available according to how the system has been used in the past.
Over time, we envisage the infrastructure around a given instrument to be able
to help users in planning and executing experiments based on prior knowledge
and the context of each laboratory setting.

5 Conclusion

Experiment data following the FAIR data principles, stored in a scientific data
infrastructure and connected by provenance information captured along with
meta-data augmented by automated semantic processing, is necessary to take full
advantage of previous knowledge and maximize the impact of scientific research.
The national laboratories and their scientific user facilities have a unique oppor-
tunity to create an infrastructure that supports the end-to-end scientific life
cycle. With expertise in place and a wide variety of instruments covering all
areas of science, they are in an ideal position to lead to way.

The benefits of developing smart laboratories go beyond the specific case
outlined here. A fully integrated system of connected instruments would open up
a world of possibilities we have not discussed. Once the AI-enabled beamlines we
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described become a reality, we can imagine major changes in the model for user
experiment proposal and planning. The same knowledge network and analytics
processes used to accelerate the interpretation of experiments could be used to
plan them. Users would be able to simulate their experiments before submitting
their proposal and therefore help the review process. The output of simulated
experiments could be used as templates for running the measurements.

The infrastructure outlined here would also greatly help the peer-review pro-
cess and reproducibility of published literature. Once all the necessary data is
captured, the end-to-end provenance trail should be assigned a Digital Object
Identifier (DOI) to be required as supplementary material when submitting
manuscripts for publication. The recent focus on artificial intelligence and
machine learning has pointed out the importance of improving our data land-
scape. We believe that taking a step back to explore how we capture the whole
life cycle of scientific endeavours has the potential to accelerate science discov-
eries even more.

Acknowledgements. A portion of this research used resources at the SNS, a Depart-
ment of Energy (DOE) Office of Science User Facility operated by ORNL. ORNL is
managed by UT-Battelle LLC for DOE under Contract DE-AC05-00OR22725. The
picture painted in this paper is the result of years worth of discussions with scientists
in the fields of chemistry, physics, and computer science. In particular, I would like to
thank Sudharshan Vazhkudai for discussions on data infrastructure and FAIR data,
Rama Vasudevan for discussions on cross-facility data analytics, Jay Billings for dis-
cussions on machine learning, Dale Stansberry for discussions on data provenance, and
Gabriel Veith for discussions on applying this approach to chemistry laboratories. I
would like to thank John Hetrick and Jim Browning for discussing this manuscript and
the overall vision.

References

1. Buckberry, H., Burke, J., Starke, M., et al.: Smart technologies enable homes to
be efficient and interactive with the grid ORNL/TM-2020/1507 (2020). https://
doi.org/10.2172/1615193

2. Intelligent Transportation Systems Joint Program Office, Strategic Plan 2020–
2025, FHWA-JPO-18-746 (2020). https://www.its.dot.gov/stratplan2020/

3. Ratner, D., Sumpter, B., Alexander, F., et al.: BES roundtable on producing and
managing large scientific data with artificial intelligence and machine learning
(2019). https://doi.org/10.2172/1630823

4. Sivia, D.S.: Elementary scattering theory for X-ray and neutron users. Oxford Uni-
versity Press (2011). https://doi.org/10.1093/acprof:oso/9780199228676.001.0001

5. Veith, G.M., Doucet, M., Baldwin, J.K., et al.: Direct determination of solid-
electrolyte interphase thickness and composition as a function of state of charge
on a silicon anode. J. Phys. Chem. C 119(35), 20339–20349 (2015). https://doi.
org/10.1021/acs.jpcc.5b06817

6. Fears, T.M., Doucet, M., Browning, J.F., et al.: Evaluating the solid electrolyte
interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron
spectroscopy and in situ neutron reflectometry. Phys. Chem. Chem. Phys. 18,
13927–13940 (2016). https://doi.org/10.1039/C6CP00978F

https://doi.org/10.2172/1615193
https://doi.org/10.2172/1615193
https://www.its.dot.gov/stratplan2020/
https://doi.org/10.2172/1630823
https://doi.org/10.1093/acprof:oso/9780199228676.001.0001
https://doi.org/10.1021/acs.jpcc.5b06817
https://doi.org/10.1021/acs.jpcc.5b06817
https://doi.org/10.1039/C6CP00978F


268 M. Doucet

7. Veith, G.M., Doucet, M., Sacci, R.L., et al.: Determination of the Solid Electrolyte
Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Car-
bonate Additive. Sci. Rep. 7, 6326 (2017). https://doi.org/10.1038/s41598-017-
06555-8

8. Browning, K.L., Browning, J.F., Doucet, M., et al.: Role of conductive binder
to direct solid-electrolyte interphase formation over silicon anodes. Phys. Chem.
Chem. Phys. 21(31), 17356–17365 (2019). https://doi.org/10.1039/C9CP02610J

9. Browning, K.L., Sacci, R.L., Doucet, M., et al.: The study of the binder poly(acrylic
acid) and its role in concomitant solid-electrolyte interphase formation on Si
anodes. ACS Appl. Mater. Interfaces 12(8), 10018–10030 (2020). https://doi.org/
10.1021/acsami.9b22382

10. Wang, A., Kadam, S., Li, H. et al.: Review on modeling of the anode solid elec-
trolyte interphase (SEI) for lithium-ion batteries NPJ Computational Materials
4:15 (2018). https://doi.org/10.1038/s41524-018-0064-0

11. Wilkinson, M., Dumontier, M., Aalbersberg, I., et al.: The FAIR Guiding Princi-
ples for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
https://doi.org/10.1038/sdata.2016.18

12. Elgrishi, N., Rountree, K.J., McCarthy, B.D., et al.: A practical beginner’s guide to
cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/
acs.jchemed.7b00361

13. Könnecke, M., Akeroyd, F.A., Bernstein, H.J., et al.: The NeXus data format. J.
Appl. Cryst. 48, 301–305 (2015). https://doi.org/10.1107/S1600576714027575

14. Shipman, G., Campbell, S., David Dillow, D., et al.: Accelerating data acquisition,
reduction, and analysis at the spallation neutron source. In: IEEE 10th Interna-
tional Conference on eScience (2014). https://doi.org/10.1109/eScience.2014.31

15. Parker, P.G., Ren, S.: ONCat (ORNL Neutron Catalog) (2018). https://doi.org/
10.11578/dc.20200513.5

16. http://www.cansas.org/formats/canSAS1d/1.1/doc/index.html
17. Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., Rindflesch, T.C.: SemMedDB:

a PubMed-scale repository of biomedical semantic predications. Bioinformatics
28(23), 3158–60 (2012). https://doi.org/10.1093/bioinformatics/bts591

18. Writer, B.: Lithium-ion batteries: a machine-generated summary of current research.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-16800-1

19. Jain, A., Ong, S.P., Hautier, G., et al.: Commentary: the materials project: a
materials genome approach to accelerating materials innovation. APL Materials 1,
011002 (2013). https://doi.org/10.1063/1.4812323

20. Zhao, S., Qian, Q.: Ontology based heterogeneous materials database integra-
tion and semantic query. AIP Adv. 7, 105325 (2017). https://doi.org/10.1063/
1.4999209

21. Stansberry, D., Somnath, S., Breet, J. DataFed: Towards Reproducible Research
via Federated Data Management 2019 International Conference on Computational
Science and Computational Intelligence (CSCI), pp. 1312-1317 (2019). https://doi.
org/10.1109/CSCI49370.2019.00245
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Abstract. ML/AI techniques, particularly based on deep learning, will
increasingly be used to accelerate scientific discovery for fusion experi-
ment and simulation. Fusion energy devices have many disparate diag-
nostic instruments, capturing a broad range of interacting physics phe-
nomena over multiple time and spatial scales. Also, fusion experiments
are increasingly built to run longer pulses, with a goal of eventually run-
ning a reactor continuously. The confluence of these facts leads to large,
complex datasets with phenomena manifest over long sequences. A key
challenge is enabling scientists/engineers to utilize these datasets, for
example to automatically catalog events of interest, predict the onset
of phenomena such as tokamak disruptions, and enable comparisons
to models/simulation. Given the size, multiple modalities, and multi-
scale nature of fusion data, deep learning models are attractive, but
at these scales requires utilizing HPC resources. Many ML/AI tech-
niques not fully utilized now will demand even more HPC resources,
such as self-supervised learning to help fusion scientists create AI mod-
els with less labelled data, and advanced sequence models which use less
GPU memory at the expense of increased compute. Additionally, deep
learning models will enable faster, more in-depth analysis than previ-
ously available, such as extracting physics model parameters from data
using conditional variational autoencoders, instead of slower techniques
such as Markov chain Monte Carlo (MCMC). Comparison to simulation
will also be enhanced through direct acceleration of simulation kernels
using deep learning. These ML/AI techniques will give fusion scientists
faster results, allowing more efficient machine use, and faster scientific
discovery.

1 Introduction

Plasma phenomena contain a wide range of temporal and spatial scales, often
exhibiting multi-scale characteristics[50]. In fusion energy plasmas, many dis-
parate diagnostic instruments are simultaneously used in order to capture these
various spatiotemporal scales, and to cover the multiple physics present in these
plasmas (see Figs. 1 and 2). In addition, fusion experiments, such as ITER, are
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increasingly built to run longer pulses, with a goal of eventually running a reactor
continuously. The confluence of these facts leads to large, complex datasets with
phenomena manifest over long sequences. In addition, simulation plays an impor-
tant role in verifying the underlying physics of experimental observations, to aid
in achieving efficient machine operation and designing future reactors. A key
challenge is enabling scientists/engineers to utilize these long sequence datasets
to automatically catalog events of interest, predict the onset of phenomena such
as tokamak disruptions [53], and enable comparisons to models/simulation. In
this paper we discuss multiple machine learning research directions with the
singular goal of enabling fusion scientists to leverage machine learning tools in
order to work more effectively with these complex multi-scale diagnostic datasets,
and to ultimately accelerate the pace of knowledge discovery in fusion energy
sciences.

Fig. 1. Example temporal and spatial scales of different broad physics phenomena in
fusion plasmas, based on Ref. [50]

Fusion tokamaks. The tokamak is the leading fusion energy device concept, with
several large tokamaks at sites across the globe. The U.S. Department of Energy
(DoE) funds two major domestic tokamak facilities (the DIII-D tokamak in San
Diego, CA and the NSTX-U spherical tokamak in Princeton, NJ), and also funds
U.S. fusion researchers to collaborate with the major international tokamaks.
There is also a significant investment in building and preparing for ITER, a
next-generation tokamak being built in the south of France, which is scheduled
to begin operation in 2025. Maximizing the scientific output from these machines
in the quest for fusion energy maximizes the return on investment made by the
U.S.

The typical workflow for fusion scientists is to run an experimental shot
(anywhere from a few seconds to hundreds of seconds on current devices), and
then apply a variety of filters, transforms, and models to raw, measured data, to
extract physically relevant quantities. The techniques used can range from sim-
ple fitting to more sophisticated Integrated Data Analysis (IDA) techniques [21],
which bring together multiple diagnostics in a Bayesian manner. Reduced rep-
resentations are sought especially in high temporal resolution diagnostics, since
manually reviewing the data is nearly impossible. These reduced representations
are visually inspected by scientists, to verify correct operation of diagnostics
and recognize physics information of interest. Reduced physics information is
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Fig. 2. Examples of the many disparate diagnostics used to measure various plasma
quantities and phenomena in tokamaks.

often stored in a database, and written observations recorded in online group
logbooks. This metadata store is useful for future work on discovering physics
from experimental shots, but the quality and quantity of remarks is variable and
wholly dependent on the researchers themselves. A principled way of identifying
and storing the metadata on plasma events during a shot could greatly help sci-
entists with uncovering patterns, and forming greater insights from experimental
shots.

The data generation rates of tokamaks is large and fast, with ITER projected
to generate 50 GB/s of information dense, raw diagnostic data. Ingesting impor-
tant data in reasonable times can aid researchers in making informed decisions
on how to guide and setup the next experiments. For scenarios where compute
resources are lacking on-site, early concept implementations of streaming data
to remote compute resources has been implemented [13,16]. Both ingesting the
data locally, or leveraging remote compute resources, needs fast and meaningful
analysis to aid faster feedback to fusion scientists, to make use of this informa-
tion for adjusting the next experimental shots. For remote, the ability to send
only data that is interesting makes the streaming more efficient. Remote sites
also need algorithms for ingesting the data in automated ways.

In addition to this manual input by scientists, automated machine control
algorithms are used locally on site to drive the experiment, to avoid instabili-
ties and achieve maximum performance. The most pressing issue facing fusion
tokamaks is a instability known as a disruption, which is a sudden loss of con-
trol causing a termination of the plasma, leading to potentially large destructive
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forces and/or heating on the containment vessel and protective wall materi-
als. There are a number of different root causes for disruptions, including edge
radiation, too high density, and magnetohydrodynamic (MHD) instabilities [10],
requiring sophisticated models to cover the multi-physics and multi-timescales.
Next-step devices such as ITER and beyond will have a low tolerance for dis-
ruptions [53]. We need to ensure disruptions can be avoided by planning with
simulation and experimental experience [23], and by using accurate predictions
of oncoming disruptions to allow steering away from unstable operation, and
triggering mitigation techniques if necessary.

Machine learning for fusion Machine learning (ML) algorithms have been used
for decades, including in fusion energy[9,57], to automate tasks and learn compli-
cated non-linear relationships between data. Traditionally, classic ML algorithms
(such as Random Forest, SVM, etc.) were used, which requires as inputs features
of data that human analysts would define, often by hand. The advent and suc-
cess of deep learning presents an opportunity to create systems for accomplishing
fusion science tasks that were not possible before on sufficiently fast time scales,
or at all. One of the reasons for deep learning’s great success is the ability to
learn multiple filters for high-dimensional data, in many cases avoiding the need
for humans to do feature extraction [37]. In a sense, deep neural networks learn
their own set of features (often called representations, which we will use inter-
changeably). This allows the deep learning algorithms to learn directly from raw
(or lightly processed) data, without hand crafted features, for example using
directly the pixels from a camera image to predict whether a cat is in the pic-
ture, instead of having humans to specify filters to extract features such as ovals
(for eyes) and triangles (for ears). In fusion physics, this same concept of using
deep neural networks to learn the filters/transforms necessary to accomplish a
task is shown in Fig. 3. This can remove some of the impetus from the fusion
physicists to exactly specify useful features based on physics models, potentially
extracting more utility from the information rich raw data produced by tokamak
diagnostics.

In the following sections we will detail several ML/AI algorithms and meth-
ods, focused around deep neural networks, which can have a significant impact on
use cases both in the fusion energy field and in various other scientific domains.
We detail how these use cases often dictate such ML/AI methods, and the use
of High Performance Computing (HPC) resources to train these ML/AI models.

2 ML/AI for Fusion Use Cases

2.1 Deep Neural Networks Architectures for Multi-scale Data

In order to meet the needs of fusion scientists with the various use cases in Sect. 1
concerning prediction and automated tagging of data, we need deep neural net-
works which can handle multi-scale data. Sequence models which are sensitive
to events over long sequences (associated with multi-scale data) are being devel-
oped to overcome the limitations of more traditional recurrent neural networks
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Fig. 3. Schematic comparison of models (“physicist”), classic or shallow machine learn-
ing reliant on hand-crafted features, and deep learning which allows working with high-
dimensional data without feature engineering. Physicists will often use models with a
number of filters or transforms applied to measured data (for example, deriving internal
inductance from magnetic sensor measurements). Classic machine learning would take
in these model parameters or “features” to learn to make predictions. Deep learning,
in contrast, allows learning directly on the raw data (“end-to-end” learning). Adapted
from Ref. [55]

(RNN), including Long Short Time Memory networks (LSTM) sequence models,
which are prone to forget events occurring over long sequences [3]. Here we point
out several areas of development to better enable training these models on HPC,
and deployment on the edge for use in real-time processing.

An exemplary fusion use case is that of accurately predicting oncoming dis-
ruptions, such that real-time controllers can be used to adjust actuators to avoid
or mitigate the disruption. As the physics involved in the cause and evolution
of a disruption are not completely understood, a data-driven approach which
can utilize as much information from available diagnostics is attractive. Over
the years many classical ML algorithms have been applied on reduced features
from diagnostics [46,52], including recently with deep LSTM architectures, which
additionally made use of spatial information [24,33]. Our recent work went a step
further, using raw data from a 2-D high-temporal resolution diagnostic (Elec-
tron Cyclotron Emission imaging, ECEi), achieving good results for disruption
predictions on the DIII-D tokamak[17,18]. A deep convolutional neural network
with dilated convolutions, the Temporal Convolutional Network (TCN) [3], was
used to work with the long, multi-scale sequences of the ECEi data (see Fig. 4).
The TCN architecture has a structure or inductive bias that aids in separating
scales while being parameter efficient, and allows for fast parallel training on
distributed GPU systems. Despite the success, many simplifications had to be
made, such as downsampling and undersampling resulting in a reduction from
the original 10 TB ECEi dataset to 100 GB. This was done in order to meet the
GPU memory limitations, and to run in a reasonable amount of time (2 days),
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Fig. 4. Temporal sequences of individual channels of the 2-D ECEi diagnostic on the
DIII-D tokamak, near a disruption

despite using distributed training with data parallelism on 16 GPUs. In the fol-
lowing we discuss several techniques that will further improve the accuracy for
these problems by enabling the use of more data, longer sequences, and larger
networks.

Scaling up Neural Network Training. Training TCN architectures using syn-
chronous data parallel training on larger GPU resources such as Summit at the
Oak Ridge Leadership Computing Facility (OLCF) will allow expanding the
amount of data and model sizes used. However, a significant difficulty in scal-
ing up data parallel schemes to large numbers of GPUs is that as the effective
batch size becomes large, there is a well known task-dependent critical batch
size beyond which the stochastic gradient descent optimization scheme simply
doesn’t learn much [38]. Additionally, data parallelism limits the size of the model
that can be used, set by GPU memory. To solve this problem, and increase
the size of the model we are able to train, a hybrid data/model parallelism
can be used, where model parallelism (splitting model layers among separate
GPUs) is used within a node (intra-node), and data parallelism is used between
nodes (inter-node) [6]. Beyond this main thrust, a newly released library from
Microsoft called DeepSpeed [44] shows promise for training with HPC. Deep-
Speed is advertised to enable training trillion parameter models, using ZeRO
(Zero-Redundancy Optimizer) [44], which focuses on data parallelism, but being
more memory efficient by partitioning the weights, gradients, and optimizer
parameters among the processes and communicating when necessary, instead
of replicating all of them as is typically done in data parallelism.

Efficient sequence models. Some recent alternative architectures which more
easily work with long sequences compared to TCN show promise, as they require
much less memory, with the tradeoff of needing increased compute. This could
more easily allow the use of large GPU resources available in current petascale
and future exascale supercomputers for training these machine learning models.
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The first of these is the Deep Equilibrium model (DEQ) [4]. The DEQ method
instead has a single, weight-tied layer, fθ, and solves the root finding problem of
gθ(zout;xin) = fθ(zout;xin)−zout = 0 iteratively using Newton or quasi-Newton
approximation methods:

zj+1 = zj − αBgθ(zj ;xin) (1)

where j is the iteration index, α the step size, and B the inverse Jacobian. Equa-
tion 1 is the forward pass of the neural network. The backward pass to update the
networks weights is done in a manner which does not require storing the solver iter-
ation information, avoiding explicit differentiation through the root-finding algo-
rithm (allowing that piece to be black-box). The result is that the DEQ method
is very memory efficient, not requiring the storing of gradients for multiple lay-
ers. The cost is increased computational time spent in the root-finding algorithm.
Another architecture which promises the ability to work with long sequences while
being memory efficient is the recent Reformer architecture [34]. This builds off the
popular Transformer architecture [51], which is often used in natural language pro-
cessing tasks. Transformers unfortunately have the drawback of requiring a lot of
memory.The keys to thememory efficiency of theReformer architecture are replac-
ing dot-product attention with locality-sensitive hashing, and using reversible lay-
ers to avoid storing gradients. While more memory efficient, the Reformer is also
computationally faster than Transformer architectures, though there are reports
time to accuracy is still slower [54].

Moving to the edge. Even when larger sequence models can be trained, they
must meet the computational, memory, and latency requirements when deployed
at the edge. For example, disruption predictions require <10ms latency to ensure
mitigation actions can be taken, and the edge accelerator used for inference must
be able to work in the nuclear environment of fusion devices. Beyond identi-
fying the hardware (GPU, FPGA, specialty accelerators like Neural Process-
ing Units, etc.), use of neural network compression with tools such as Distiller
[1] can greatly reduce the memory and computational requirements for edge
accelerators.

2.2 Working with Multi-modalities

The combination of multiple diagnostics (in machine learning parlance often
referred to as multiple modalities) offers the potential to capture complicated
multi-physics sequences of events for more robust predictions. For example, dis-
ruptions have a number of different physics root causes, which may be more accu-
rately predicted using diagnostics more sensitive to those physics, e.g. bolom-
etry diagnostic for impurity radiation induced disruptions. There are various
techniques to allow combining modalities into a single network, or spliced (often
referred to as “fused”) at different levels (see Fig. 5). This not only makes use of
shared network weights for efficiency, but also enables the network to make use of
correlations among diagnostics, with the potential to improve accuracy. However,



276 R. M. Churchill et al.

caution must be used as some modalities anti-correlate, and can have a nega-
tive impact on accuracy depending on where injected. Naturally the increased
complexity and data will require increased compute resources.

The question of what level to fuse multiple modalities in neural networks
is dependent on data set and network, with many permutations possible. One
option that is more computationally efficient than brute force training all permu-
tations is to use a combinatorial optimization process to try fusing at different
levels, optimizing to avoid competing modalities [49]. Another technique, feature-
wise linear modulations (FiLM) uses learnable parameters at each level, so that
the fusion is automatically learned during the training of the network [22,43].
For example, two modalites, say an ECEi signal and bolometer signal, normally
would have their output z of some intermediate layers fused by simple concate-
nation z = [zecei, zbolo], e.g. the late ‘fusion’ in Fig. 5(b). FiLM layers instead
perform an affine transformation at each layer, z = γ(zecei) � zbolo + β(zecei),
where γ and β are the learnable parameters, as seen in Fig. 5(c). This offers a
more principled way to fuse multiple modalities. With all of these techniques,
even while more efficient, the needed compute will increase with increasing num-
ber of modalities, making HPC attractive for training.

Fig. 5. Example layout to include FiLM generator parameters, incorporating multi-
modalities such as ECEi and bolometry to enhance disruption predictions. Adapted
from Ref. [22]

2.3 Working with Small Labelled Training Sets

One of the difficulties in using deep learning for supervised learning is the require-
ment to have a lot of labelled data, usually manually labelled by experimentalists.
Often this is impractical due to the time required of the experimentalist, or in
situations where multiple examples can not be tolerated, such as disruptions on
ITER. While transfer learning [47] can serve to learn a new task with a small
dataset, it still normally requires that the neural network be trained on an ini-
tial, larger labelled dataset. An often more common scenario is that we don’t
have such a large labelled dataset to begin with. In these scenarios, with a suffi-
cient amount of unlabelled data, we can use a technique known as self-supervised
learning to pre-train a neural network by simply having it look at the unlabelled
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data and attempt to predict future time points, such that the neural network
learns the underlying data distribution. This greatly increases the amount of
data to process, again leading to an increased need for HPC compute. With the
representations learned from this master pre-trained network, we can train a new
network for a particular supervised learning task but with much fewer examples
than normally needed [56]. Self-supervised pre-training can also boost accuracy
when working with large labelled datasets (albeit a smaller boost than with the
smaller labelled datasets).

With fusion diagnostic data, unlabelled data is usually plentiful. Even in
scenarios like the startup of ITER, where we must avoid too many disruptions,
the slow ramp up to high power scenarios will give a large database of typical,
unlabelled data which can be used in a self-supervised manner. Self-supervised
learning can also be useful in generic scenarios where fusion scientists want to
find other instances in historic data of a potentially new phenomena, such as a
new flavor of Alfven Eigenmodes in NSTX-U data.

Most of the recent research on self-supervised learning for sequences focuses
on natural language processing [20], however there are various techniques avail-
able for more continuous, scientific data, for example the wav2vec model [48],
which is used for speech recognition from audio time-series signals. The main
idea is to encode each section of the input, x, using a neural network, genc,
into a lower-frequency feature representation zi = genc(xt>ti,t≤ti+1), then pre-
dict future times in this feature space, i.e. predict zi+k using z ranging from
the current zi back to zi−r, where r represents the user-specified receptive field.
A context network is used to aggregate several past feature representations,
ci = gcontext(zi, ..., zi−r). Instead of calculating the mean squared error from
the real and predicted zi+k, a contrastive loss [41] is used, which attempts to
distinguish the true sample, zi+k, from a number of other samples z̃ drawn from
the signal which are not zi+k (distractor or negative samples):

Lk = −
∑

i

(
log σ(zT

i+khk(ci)) + λ E
z̃∼pn

[
log σ(−z̃T hk(ci))

])
(2)

σ is the sigmoid function, hk an affine transformation, and σ(zT
i+khk(ci)) repre-

sents the probability that zi+k is the true sample. pn is the probability distribu-
tion from which the distractor samples are drawn, typically taken to be a uniform
distribution. Training in this manner results in the networks genc and gcontext

which can produce feature and context vectors zi and ci from new labelled data,
which in turn can be used to train a neural network on a new supervised task.

2.4 Working with Streaming Data

Real value for fusion scientists can be had from receiving analysis and simulation
results quickly, so that they can get near real-time feedback on machine perfor-
mance and steer the experiment accordingly. Work is ongoing in creating the
infrastructure to enable streaming data from fusion experiments to remote com-
pute resources [13,36]. As part of this infrastructure, techniques for reducing
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the data size to send are being researched, for example compression or send-
ing only areas of highest contrast. In general, whether researchers are local or
remote, they derive enormous benefit from tools helping them deal with the del-
uge of data, such as algorithms for fast identification of known and unknown
(anamolous/novel) events, and parameter estimation to systematically compare
models to experimental data.

Anomaly/Novelty detection A number of anomaly detection algorithms are
available for time-series data that could be applied [2]. Deep neural networks
have increasingly been used for anomaly detection, due to their capacity and
potential to learn the underlying data distribution [12]. A useful general method
is to learn representations from unlabelled data, and then continually monitor
new data to see if it deviates significantly from the common representations to
determine if an anomaly/novelty is present. This can be accomplished using the
latent space representations from the self-supervised learning algorithms in the
previous section, or with related architectures such as autoencoders. A variant
known as the Vector Quantised- Variational AutoEncoder (VQ-VAE) [42] has the
typical encoder and decoder networks, but assumes discrete, categorical posterior
and prior distributions. While often used for generative modeling (e.g. creating
synthetic audio), the learned latent space distribution of the VQ-VAE is also
very useful. The VQ-VAE has had some upgrades, dealing with using hierarchi-
cal representations (VQ-VAE-2, multiple encoders/decoders, at different scales)
[45], and to more efficiently work with large embedding latent spaces (DVQ)
[32]. Using such networks should improve the detection of anomalies/novelties
through better representation of the previously observed data distribution. The
application of these anomaly/novely techniques can be at the fusion machine
(the edge), to reduce the data needed to stream over to remote compute centers,
or at the remote analysis side, to quickly allow remote scientists to identify time
points which merit further scrutiny. The outputs from these VQ-VAEs can be
saved to a database to give scientists enhanced metadata within an automated
logbook, with entries marking time points of interest. We can also gain infor-
mation by combining these VQ-VAE predictions across diagnostics, to better
understand these predictions. If only a single diagnostic predicts anomaly, this
may be the result of instrument issues, and if predictions from multiple diag-
nostics were anomalous, this would give increased likelihood of a fundamentally
different plasma operating regime (both cases useful information for scientists).

Parameter Estimation. Beyond anomaly/novelty detection for enabling sci-
entists to quickly recognize time slices of importance, neural networks can also
greatly aid in the problem of comparing experimental diagnostic data to ana-
lytical physics models, allowing efficient and speedy parameter estimation in
a Bayesian manner. A fusion application example of parameter estimation is
extracting model parameters for tearing mode stability, Δ′ and ωc, from the
2D ECEi data from KSTAR [14]. As an extension, Integrated Data Analysis
(IDA) techniques [21] allow bringing together multiple diagnostics to estimate
model parameters in a systematic way, producing with it uncertainty informa-
tion. In fusion, often Bayesian inference for parameter estimation is done using
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the MCMC algorithm [29] or its variants like Hamiltonian MCMC, however this
is slow and can often require hours for estimating a single set of parameters.
This is not scalable given there are potentially millions of time slices in long-
pulse experimental shots. There are multiple recent works using neural networks
to speed up this Bayesian inference, using various Bayesian neural networks
techniques [30], autoregressive normalizing flows [26], conditional VAE (CVAE)
[25], and simply training a neural network on a large dataset generated from
assumed priors [15]. The conditional VAE, for example, works by learning the
model parameters used to generate synthetic data, and thereby being able to pro-
duce a distribution of model parameters based on new inputs. These networks
enable fast analysis, which can be very beneficial for fusion scientists needing
to quickly compare to established physics models. Consideration for inference
time is not as stringent for real-time control settings, but need to be accom-
plished on the edge for determining streaming, or at remote compute sites in
the time in between experimental discharges. This research, comparing experi-
ment to models, is a step towards more sophisticated comparisons of experiment
to simulation directly, when likelihoods are difficult to calculate [11,19]. These
techniques would be very powerful for fusion energy, as simulations are often
required to have a faithful model of the plasma dynamics.

3 Working with Simulations

Simulations form an important part of understanding experimental observations,
especially as diagnostics can not measure everywhere or everything inside fusion
devices. Simulations for fusion physics range from simple reduced models to
large-scale simulations run on extreme-scale HPC machines such as Summit.
Even with the advent of exascale computers, accelerating simulation kernels can
be beneficial to enable richer, higher-fidelity physics potentially not possible
otherwise. Neural networks are capable of learning high-dimensional, nonlinear
surrogates of simulation kernels, and are increasingly being applied in simulation
settings to do so [5,7,8,31,39].

An example of this is seen in work using an encoder-decoder neural network
to accelerate the Fokker-Planck collision operator [27] in the massively parallel
particle-in-cell code XGC [35]. In order to more accurately simulate the bound-
ary area of tokamaks, XGC needs to simulate multiple impurity ion species.
The collision operator scales quadratically with the number of ion species, and
can quickly become a bottleneck if simulating multiple charge states of heavy
impurities such as tungsten. The encoder-decoder network was trained to ingest
kinetic particle distribution functions, and output the result of the collision oper-
ator [40]. Relative conservation error on the order 10−4 has been so far achieved
in the model training, and still improving. The neural network approach also
allows better convergence globally, in regions with very high collisionality which
may not converge well with the current Picard iteration solver. The main advan-
tage of course is the neural network approach reduces the time to solution by
orders of magnitude. Combining the neural network approaches with traditional
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iterative solvers may provide a path for acceleration, with still achieving the low
convergence error needed for accurate simulations.

Fig. 6. Encoder-decoder neural network architecture for the integro-differential Fokker-
Planck collision operator, which replaces the Picard iteration solver used in XGC

Deep learning has the potential to aid in various other facets of traditional
HPC simulations beyond kernel acceleration, including physics-based reduced
or surrogate models [28], and simulation-based inference [19]. This will greatly
enhance the connection of experiment to simulation and theory, providing even
more insights into fusion science.

4 Conclusion

Many powerful machine learning tools are available and being developed which
can aid fusion scientists in understanding and working with complex diagnostic
datasets. The critical problem of accurate disruption predictions was mentioned
several times and is a key example. Current ML models and simulations still fall
short of the needed disruption prediction accuracy, which is a critical and urgent
need the tokamak fusion community faces as it prepares for ITER operation and
beyond. The ML techniques discussed in this paper have the potential to achieve
the needed accuracy to ensure safe operation of tokamaks such as ITER. These
machine learning techniques can also be applied in a range of tasks, such as
creating an “automated logbook” using a neural network to identify phenom-
ena of interest, creating tremendous value in helping physicists sift through the
data intelligently. Also, they can be utilized throughout areas of tokamak con-
trol, streaming of diagnostic data to remote compute centers for near real-time
feedback, and to compare experiment to models.
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Abstract. Fusion energy experiments and simulations provide critical
information needed to plan future fusion reactors. As next-generation
devices like ITER move toward long-pulse experiments, analyses, includ-
ing AI and ML, should be performed in a wide range of time and comput-
ing constraints, from near-real-time constraints, between-shot analysis,
and to campaign-wide long-term analysis. However, the data volume,
velocity, and variety make it extremely challenging for analyses using
only local computational resources. Researchers need the ability to com-
pose and execute workflows spanning edge resources to large-scale high-
performance computing facilities.

We present Delta, a system to address data analysis challenges, includ-
ing AI/ML, in fusion science, by leveraging the ADIOS I/O library and
middleware, to support executing science workflows over the wide area
network for near-real-time streaming. We discuss the data federation
challenges in performing remote workflows, focusing on on-going research
work in (1) managing, reducing, and streaming data to minimize I/O and
data movement overheads, (2) decompressing and reorganizing data for
analysis, and (3) executing workflows for automated data analysis. We
introduce examples for deep-learning based data analysis for the fusion
domain and demonstrate how we use Delta to construct end-to-end work-
flows for a fusion device in Korea, connecting a remote DOE facility in
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the USA. The capability demonstrated by this project is the basis for
improving the state of the art for near-real-time data federation amongst
remote facilities.

Keywords: Data federation · Fusion · Data streams · Remote data
analysis

1 Introduction

As scientific experiments have gotten bigger and complex, scientists have had to
rely more on concurrent, online, high-performance computing resources to ana-
lyze, reduce, and/or visualize the data streams. Such experiments may depend
on hundreds or thousands of high-resolution, high-speed sensors to carefully col-
lect the required data. Even further, there has emerged a new class of federated
experiments that bring this experimental data together with large-scale simu-
lation and the associated analysis capabilities to gain fast and accurate under-
standing of complex phenomena. However, the logical, time-scale, and physical
discrepancies between the experiment site and high-computing facilities require
scientists to explicitly spend time to manage their data, resources, and execu-
tion patterns in the distributed setting, while still trying to find time to do their
science.

Plasma science, and fusion energy research in particular, have already made
the transition into exploring these sorts of federated and hybrid experimen-
tal/computational environments. As next generation devices like ITER [17] move
toward long-pulse experiments, not only will the amount of data increase, but
there will also be an intense focus on this federation of experimental and simula-
tion results. In particular, ITER has announced the intention that no run should
occur on the physical facility without first having a full set of simulated results
to compare against. Any deviations from predicted plasma behavior should be
monitored and such monitoring should trigger additional analysis/simulation
to identify causes of deviations. If significant deviations can be identified and
assessed rapidly during an experiment, then such information can contribute
to the optimization of the experimental plan and ultimately contribute to the
timely realization of the ITER mission.

In this context, the workflows needed for timely and autonomous delivery
of the analytics become extremely important. There are a host of new, next-
generation compute-intensive AI and ML analyses that will need to be run over
a wide range of time (e.g., near-real-time, between-shot) and computing (e.g.,
edge device, GPU accelerator) constraints. However, the data volume, velocity,
and variety make it extremely challenging for AI/ML analysis using only local
computational resources. Therefore, researchers need the ability to compose and
execute workflows spanning edge resources to large-scale high performance com-
puting facilities.

Currently, constructing such a capability is labor-intensive and distracting
from the core science investigation. We represent a team of computer science
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and fusion scientists who are experiencing such data federation challenges. In
our research and development of software tools to support current and future
workflows aimed at next-generation devices such as ITER, we have identified
what we view as core challenges and the capabilities that are needed to address
them. We present a framework for aDaptive rEaL Time Analysis, Delta for
short, as our progress that addresses such data federation challenges for remote
fusion experiment analysis. Specifically, we design Delta to provide services and
runtime support for the following core capabilities: 1) Temporal analysis, 2)
Feature detection, 3) Data reduction/compression, and 4) Data movement and
access. All of these are identified as a critical, generic tasks needed to support
federated fusion data analysis.

This infrastructure for Delta is constructed using our Adaptable I/O System
(ADIOS) [12] as a backbone, which offers a high-performance data manage-
ment solution for HPC storage as well as an online data management based
on a publish/subscribe abstraction [8,13]. We take advantage of ADIOS’ pub-
lish/subscribe interface in which users can federate data producers (sensors or
simulations) and consumers (analysis or visualization application).

In this paper, our contribution is in identifying these core capabilities and in
offering experimental validation of this approach for real scientific investigations.
In Sect. 2, we discuss two fusion experiments and their data, which motivate our
research. One of which is a multi-national collaboration between the KSTAR
facility in South Korea, researchers at Princeton Plasma Physics Laboratory,
and contributors from Oak Ridge National Laboratory as well as the NERSC
Computing Center. In Sect. 3, we demonstrate how we use Delta to attempt
to support the temporal and spatial evolution of the plasma within the device
during long-pulse experiments to simulated results and online analytic pipelines.

An additional concern that we address in our Delta experiments has to
do with the introduction of AI/ML methods into the federated computing
pipeline. In many ways, AI/ML methods represent a fourth pillar to the tra-
ditional approaches to science of experiment, theory, and simulation. As such,
we found that there were unique constraints and considerations that needed to
be respected in order to fully integrate AI/ML methods into Delta. Although
utilizing a previously-trained model may not be very different from other analyt-
ics methods, an ML algorithm we use in this paper (the variational auto-encoder,
VAE), which allows for efficient compression and generation of surrogate data
representations, combines training and model usage in novel ways. The experi-
ence of integrating these features into the capability matrix of Delta has offered
lessons that we believe can be applicable to other areas of science as well. Some
of these connections will be discussed in Sect. 4.

1.1 Related Work

We briefly discuss existing work prior to Delta in the field of remote data feder-
ation and AI/ML applications for data streams.
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Remote Data Federation: Data federation for stream data processing over
a wide-area network has been an active research area for the last decades. In
our previous work, WASP [5], we explored our initial research on how to use
data streams to remotely federate data from KSTAR and fusion simulation with
the previous ADIOS version. In this paper, we extend our work with new data
transport engines, called DataMan and SST, by leveraging a newer version of
ADIOS and focus on demonstrating data federation between KSTAR in Korea
and one of DOE HPC sites, NERSC, in the USA.

Amazon Lambda [2] and Apache OpenWhisk [1] utilizes the cloud platform
to ingest data collected from distributed sensors or the internet at scale. Our
work focus more on performing mission-critical analysis for science, targeted
toward near-real-time support.

While Codor [20] and Globus [7] focused on utilizing multi-institute comput-
ing resources, integrating remote computing sites and data facilities has been
a new trend as the big data challenge emerges. More recently, Cray announced
the next interconnect network, Slingshot [3], which will include the capability to
connect remote third-party data centers with HPC centers.

AI/ML Applications for Streams: As data volume grows at an exceeding
rate, several floating-point lossy data compressors, such as ZFP [11], SZ [6], and
MGARD [4], have been actively researched and applied in many science applica-
tions. Researchers start looking at deep learning methods for data compression
as well. While most lossy compression methods are broadly based on numeri-
cal solutions for regression, interpolation, and decompositions, data compression
with deep learning is mostly based on developing a generative process for the
data provided by users. A family of generative deep learning models, such as
Variational Autoencoders (VAE) and Generative Adversarial Network (GAN),
has been developed to reconstruct missing parts of an image or compress image
data. PixelRNN [16], WaveNet [15], and realtime adaptive compression [19] are
some of the examples. In our paper we explore vector quantization based VAE,
VQ-VAE [14], for our fusion data compression.

2 Remote Fusion Experiment

ITER [17] is the largest, next-generation international experimental fusion reac-
tor currently being built in France, aiming to begin operation with first plasma in
December 2025. ITER will make a huge impact on how fusion scientists process
and federate experimental data for online analysis by integrating their workflow
using local and remote compute resources. In this section, we describe the cur-
rent fusion experiments and data challenges by using the cases of two current
machines, KSTAR and NSTX-U, to give an overview of fusion data challenges.

2.1 KSTAR Fusion Experiment and Workflows

The Korea Superconducting Tokamak Advanced Research (KSTAR) [10] is a
medium-sized tokamak (or a fusion reactor). This fusion device confines a plasma
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whose core temperature may exceed 50 million degrees for up to 5 min. Achieving
such long plasma confinement times with available technology requires the use
of superconducting magnet coils and KSTAR is one of only a hand full supercon-
ducting tokamaks ever built. Operating with such uniquely long pulses, KSTAR
data is a relevant target to develop federated data analysis systems for.

Numerous scientific diagnostics interrogate the plasma and its supporting
machinery in plasma discharges and generate a variety of data streams. For
plasma diagnostics, designed to investigate physical processes occurring in the
fusion plasma, read-outs of high-dimensional data on a microsecond time-scale is
required. Electron Cyclotron Emission Imaging (ECEI) diagnostics for example
measure the intensity of emissions by free electrons in the plasma. This informa-
tion allows to recover fluctuations of the electrons temperature, which in turn
gives physicists important information on the macro- and micro-scale dynamics
of the confined fusion plasma. Modern ECEI systems, as the one installed in
KSTAR, measure the emission intensity using hundreds of spatial channels with
Megahertz sampling rates. Generating a data stream of about 5 GByte per sec-
ond, this diagnostic produces a fast, high-dimensional data stream that makes
it challenging to analyze in near real-time.

A common analysis workflow for ECEI time series data is spectral analy-
sis routines which compare ECEI channel pair combinations. Since short-time
Fourier transformations are used for this workflow, the time series data for this
workflow can be divided in millisecond long chunks. Furthermore all channel
pair combinations can be treated separate from one another. That is, the input
data for this algorithm consists of numerous relatively small data chunks which
can all be analyzed independent from one another. Such workflows are typically
performed manually by fusion scientists in a batch-wise fashion some time after
a given plasma shot. While this workflow involves the calculation of standard
spectral quantities, performing it on the large amount of available ECEI data
render it a substantial task.

We envision federated data analysis systems that perform such a prototypical
workflow with little configuration. The system should allow to offload the data
analysis to HPC systems that can handle fast, high-dimensional incoming data
stream and perform the analysis in near real-time to facilitate decision making.

2.2 NSTX-U Fusion Experiment and Workflows

National Spherical Torus Experiment - Upgrade (NSTX-U), a magnetic fusion
device that is operated by the Princeton Plasma Physics Laboratory (PPPL),
provides another examplary analysis workflow that can be enhanced using fed-
erated compute resources.

One of the diagnostics installed in NSTX-U is the so-called gas-puff imaging
(GPI) system. This diagnostic measures light emissions from the edge of the
confined plasma using a fast framing 2d camera that captures 80-by-64 pixel
frames at a rate of about 400,000 frames per second. A particularly interesting
phenomena that can be studied by GPI is the motion of plasma filaments with
excess pressure that transport a significant amount of hot plasma towards the
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main chamber walls. As such they may affect confinement performance and erode
material surfaces. When observed in the two-dimensional view of the GPI, these
filaments present their circular cross-section, usually referred to as blobs.

To better understand this blobby transport, physicists study statistics of the
blobs observed in the plasma discharges, including their cross-field sizes, ampli-
tudes and velocities. All of these are readily calculated from GPI data. Modern
algorithms rely either on manually selected filters or use machine learning algo-
rithms to detect blobs in single frames and compile statistics on their extent and
their dynamics.

Now NSTX-U plasma discharges last only a few seconds and the GPI diag-
nostic only collects data for a fraction of that time, typically about 500 MBytes
per discharge. Blob detection can be performed in individual frames and is there-
fore parallelizable in a similar way as the ECEI workflow. To compile the motion
of plasma blobs in a given discharge however, the positions of blobs in the entire
sequence of images is required. In other words, the data needs to be made avail-
able in full and in order. This, together with the fact that we are using a neural
network based architecture to detect blobs motivates us to treat this workflow
as a machine learning toy model for the context of federated data analysis.

The requirements posed by these two workflows allow us to derive capabilities
we want from a federated workflow system. While this list should not be seen as
exhaustive, the workflows described above capture a broad range of requirements
for other workflows.

Capabilities to drive future federated fusion experiments

– Reliably transfer large volumes of data with high velocity from data pro-
duction site to HPC resources with minimum overhead (e.g., memory-to-
memory)

– Facilitate execution of data analysis routines with as few as possible
changes to existing codes

– Adaptively adjust data analysis and compression techniques in real-time
to be reactive to analysis results and network performance

3 Delta: Supporting Federated Data Today

We present the Delta framework as a concrete example on how federated data
analysis workflows may be implemented and facilitated with ADIOS. We also
discuss how recent AI/ML methods can be incorporated in such a framework.

3.1 ECEI Analysis with Delta

Delta is a python framework that facilitates federated data analysis workflows.
In particular, it is used to analyze data from the KSTAR ECEI diagnostic in
near real-time by using remote high-performance computing resources at Cori,
NERSC. While we aim to facilitate general federated data analysis workflows
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with Delta in the future, it has been designed around the task to perform a
suite of spectral analysis on time-series of imaging data from KSTAR’s ECEI
diagnostic. We choose this task because it can be seen as a prototype workflow
for analysis of other diagnostic data, such as probes or magnetic flux sensors,
and because the ECEI diagnostic produces a high-velocity data stream.

Figure 1 illustrates the network topology that Delta targets, KSTAR and
NERSC as the experimental and compute site and as well as an additional
storage backend that feeds live-streams of analyzed data into visualizers. As a
framework for distributed computing, Delta is comprised of multiple components
that connect the individual sites with one another. At KSTAR, a generator
sources and streams sequential tranches of ECEI data to NERSC. This stream is
received by a middleman running on the NERSC Data Transfer Node (DTN) and
forwarded to a processor on Cori. This processor uses a dispatcher, a thread
for asynchronous I/O, and uses MPI to execute a user-defined suite of spectral
analysis on compute nodes. Analyzed data is stored in a storage backend, such
as a database. Data visualizers can then ingest this data and make it available
to researchers in near real-time.
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Fig. 1. Where does Delta live? Delta consists of multiple distributed components (gen-
erator, middleman, and processor) and ADIOS provides remote data federation. More
details can be found in [9].

Delta consists of multiple distributed components and more comprehensive
discussion of achieved performance on the architecture can be found in [9].
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The ECEI workflow consists of calculating spectral quantities, the cross-phase,
cross-correlations, coherence and cross-power for 18, 336 unique channel pair
combinations from the 192 channels of the diagnostic on 500 time chunks con-
sisting of 10, 000 data points per channel. Launching this analysis on Cori, where
the processer runs on 32 compute nodes, Delta performs the ECEI workflow in
339 s. To set this runtime in context, performing this workflow using a naive
single-core implementation takes multiple hours.

3.2 Adaptable Data Transfers Using Data Compression and
Filtering

One of the challenges in remote data federation for near real-time processing is
how to reduce the amount of data to transfer over a wide-area network. Data
filtering and compression are two of the most common practices for remote pro-
cessing. If one can accurately detect specific features of interest in the data
stream, we can filter out unnecessary parts and send only the necessary data for
remote processing. With lossy compression, if one can compress data for sending
and receivers can reconstruct the original data with minimum loss of information,
we can save network bandwidth. Filtering and compression can be combined or
used separately. While developing algorithms and methods for feature detection
and information preserving encoding based on conventional machine learning
techniques have been active research areas and numerous techniques have been
deployed so far, deep learning-based approaches are getting attention recently
for its flexible and customizable design concept.

We explore two DNN-based methods, YOLO and VQ-VAE, with the NSTX
(before the upgrade) GPI images, real-world fusion data set, to demonstrate
AI/ML-based data filtering and compression workflows.

YOLO Filtering. We explore data filtering with DNN-based feature detection.
YOLO [18] is a state-of-the-art DNN algorithm for real-time object detection. It
is based on the idea of using a single-pass neural network regression for detection.
In contrast, most object detection systems are based on multi-pass classifiers and
compute-intensive localizers, which might not be efficient for fusion data toward
near real-time processing.

We train a YOLO model with a set of examplar blob images extracted from
the NSTX GPI data and conducted a set of experiments to test the detection
performance against the data set prepared for validation. We compare YOLO
with a conventional blob detection method using ellipse curve fitting. In the
ellipse curve fitting, we find contours of blob boundaries and perform a fitting
to find ellipse parameters to fit each contour into an ellipse shape. In contrast,
YOLO divides the whole region into multiple subblocks and performs a one-pass
regression to decide whether a chunk contains an object of interest, which is a
blob in our case. Figure 2 demonstrate how YOLO can detect blobs compared
with ellipse fitting based blob detection. We extend our test to check whether
the model we built can be used for the out-of-sample data. Table 1 shows various



Data Federation Challenges 293

accuracy measurements for four different data sets we prepared. Except for Set
A, which is the in-sample data, Set B-D are out-of-sample data. The performance
result shows that YOLO detection performance remained closely similar even for
the out-of-sample datasets.

Fig. 2. Blob detection demonstrated with NSTX GPI images, comparing conventional
ellipse fitting with DNN-based YOLO.

Table 1. Performance of YOLO with NSTX GPI data set.

Recall (%) Precision (%) Accuracy (%)

Set A 96.8 93.2 95.2

Set B 96.0 90.8 97.2

Set C 93.7 87.8 96.6

Set D 91.7 80.8 98.9

VAE Compression. Next, we explore how we can use DNN to build a gen-
erative model that can efficiently find a compressed representation of data from
which users can reconstruct the data. We use VQ-VAE [14], a variant of Vari-
ational autoencoder (VAE) families, as a reduced representation finder. While
conventional VAEs focusing on finding Gaussian distribution as a latent repre-
sentation, VQ-VAE employes vector quantification to capture a more discrete
nature of features in the data.
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The core of the VQ-VAE algorithm is to find an underlying latent representa-
tion of encoding data, which can be decoded with a minimum loss of information.
In the context of data compression, the latent representation can be considered
as a reduced form of data. By sending this reduced representation, a receiver
can reconstruct the original data with a certain degree of information loss. Com-
pared with conventional lossy data compressions, such as ZFP and SZ, VQ-VAE
is generative as it recovers the process of data generation and is customizable as
the network architectures and parameters are tuned for the user’s data set.

Figure 3 demonstrate how VQ-VAE can learn NSTX GPI images and recon-
struct. The errors measured by Root Mean Square Error (RMSE) show about
22% errors without any treatment. With a noise filter applied, we further low-
ered the errors around 12%. In this experiment, we achieved 8x data compression
ratio. We leave more extensive comparison studies for the next work.

(a) Frame: 3328 (b) Frame: 9232

Fig. 3. Demonstration of VQ-VAE reconstruction with NSTX GPI images. (A) original
NSTX GPI image, (B) reconstructed image by VQ-VAE, (C) original image with Gaus-
sian denoising treatment, and (D) reconstructed VQ-VAE image followed by Gaussian
denoising. Frame numbers and Root Mean Square Error (RMSE) metrics are shown
on the bottom-right corner.

3.3 Remote Data Federation Services with ADIOS

ADIOS [12] is an HPC I/O library designed to provide I/O services to users,
such as data management, transport, and transforms. We leverage ADIOS to
build our framework, Delta. ADIOS supports remote data federation with a
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convenient and unified data interface that allows scientists to handle data and
its metadata both as files and data streams.

To transport data as streams, ADIOS provides a plug-in approach; ADIOS
provides multiple engines users can choose depending on the need. We use two
main ADIOS engines, called SST and DataMan, which can be used for a wide-
area network transport. We briefly introduce SST and DataMan engine used in
this paper and provide experiment results to demonstrate how we use ADIOS
for remote analysis.

Scalable Staging Transport (SST). SST is a flexible data transport engine
in ADIOS. It is designed to utilize a wide range of network protocols, such as
RDMA, TCP, and UDP, widely used for both high-performance HPC networks
and long-haul wide-area network connections. This flexibility is an important
feature, especially for remote data processing. With SST, users can switch net-
work protocols easily to adapt to different network environments.

On the other hand, data flow control is another important aspect in data
stream processing. It is common the speed of data generation and processing is
different. Without caching or buffering, either the generator or the receiver needs
to wait simply by wasting valuable CPU cycles and resources. SST provides a
buffering policy for users to control, such as changing buffer size or applying
rules when a buffer is full or not.

DataMan. While SST is an engine for the best flexibility, DataMan is another
ADIOS engine mainly focusing on performant data transport over a wide area
network. DataMan is specifically optimized for long-distance low-latency data
movement, leveraging the ZeroMQ library for asynchronous messaging.

Experiments. First, we measure the bandwidths between KSTAR and NERSC.
We have two connection points in NERSC. We can connect to NERSC through
the NERSC DTNs, a set of dedicated nodes for wide-area data transfer. NERSC
also allows users to connect directly to Cori compute nodes as an experimental
feature. Figure 4 shows the bandwidths, measured by iperf3, a) between KSTAR
and NERSC DTN and b) between KSTAR and NERSC Cori compute node, with
a varying number of parallel streams, up to 8.

In both cases, we observed variances in the throughput between KSTAR and
NERSC due to the congestion. Also, there are large differences in throughput
for sending from Korea to NERSC DTN or directly to Cori compute nodes. It
implies we need a transport mechanism adaptively adjust throughput developing
on the dynamic network conditions. DataMan is currently implemented adaptive
performance, and further improvement is under development.

In Fig. 5, we performed the ECEI workflow (Fig. 1) with 2 different sce-
narios; (a) 2-node scenario where we send ECEI data from KSTAR directly
to Cori compute node. We use DataMan between KSTAR and Cori, and (b)
3-node scenario where we send ECEI data to a middle man running on a NERSC
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Fig. 4. Network performance between KSTAR and NERSC DTN nodes (left) and
between KSTAR and Cori compute node (right), measured by iperf3 with up to 8
parallel streams. The Y axis (throughput) is log scaled.

DTN node, which receives data from KSTAR and concurrently forwards to the
ECEI analysis processes running on Cori compute nodes. We use DataMan for
KSTAR-NERSC DTN over wide area network and SST between NERSC DTN
and Cori compute node communication. Although we deployed an extra pro-
cess (middleman) in our 3-node scenarios, we were able to finish ECEI analysis
task earlier than using 2-node scenario. ADIOS’s transport engine enabled us to
achieve flexible workflow composition and execution.
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Fig. 5. Timelines of tasks performed in two cases; (a) 2-node scenario (KSTAR-Cori)
and (b) 3-node scenario (KSTAR-DTN-Cori). We used ADIOS DataMan engine for
both KSTAR-Cori and KSTAR-DTN transport. ADIOS SST engine was used intra
NERSC transportation, DTN-Cori.
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4 Toward Plasma Science of the Future

We have explored how we can support the next-generation data analysis chal-
lenges in fusion science, based on the real-world data and workflows obtained
through our collaboration with KSTAR and NSTX-U, which we believe can be
applicable to the upcoming ITER challenges. We summarize key capabilities
identified for the success of the future fusion analysis workflow.

First, an adaptive workflow system with intelligence is required. This will
allow the system to adjust to the state of the network and/or receiver agent
responsiveness, by for example sending coarser or reduced data when the system
lacks the network fidelity to accomplish the streaming, and returning to complete
full dataset transfers when possible. With the current ECEI workflow with Delta,
we found optimal network transfer could result in sent data chunks lost if the
receiver agent was overwhelmed and not able to keep pace. Adaptivity built
into the framework will allow intelligent, automated throttling (through data
coarsening, or delayed network transfer) depending on the data stream and user
needs, which for some streams will require complete datasets (such as the GPI
workflow), and for others can accept data loss (such as the ECEI workflow).

Second, extending on the concept of adaptivity for data streaming, a flex-
ible yet tightly integrated workflow execution will be enormously beneficial in
terms of data monitoring and workflow automation. This enables reactive work-
flow components, where additional, more expensive higher-tiered analyses can
be spun up based on an anomaly/novelty detected in lower-tiered analysis on
data streams. For example, a sudden change in the correlation between cer-
tain ECEI channel pairs could indicate the presence of magnetohydrodynamics
(MHD) mode activity, which could automatically trigger simulations into the
current MHD stability limits based on magnetic and kinetic plasma profiles
diagnostics. Instead of waiting for the scientist to manually comb through the
data and run the simulations themselves, the results would be present and the
scientists notified to draw their attention to such time points of interest.

Third, incorporating next-generation analysis, including additional AI/ML,
which can take advantage of hardware-based acceleration can be a game-changer
for how fusion scientists analyze their experiments. Automating and accelerating
the tasks fusion scientists must perform in time for more immediate feedback will
allow scientists to extract richer insights from their experimental and simulation
data. Interfacing humans and AI/ML in this way can be greatly beneficial, but
must be researched and explored in the context of fusion science, to determine
best practices and needs, for example if techniques found in continual learning are
needed to update machine learning models as new tasks and data distributions
present themselves.

5 Conclusion

Fusion experiments pose unique data federation challenges. Not only the vol-
ume, velocity, variety of data the fusion experiments produce, but also the time
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constraint for between-shot or near-real-time analysis makes performing data
analysis workflows challenging. In addition, utilizing remote high-performance
computing resources is being explored to perform compute-intensive, state-of-
the-art analysis at scale and/or to couple with impromptu simulation runs on
an HPC machine for making timely decisions for the next shot. Indeed, con-
structing and executing such analysis pipelines combined with multiple remote
sources is challenging and efficient data federation for remote data processing is
necessary.

We present Delta as a framework to facilitate fusion data analysis using
remote computing resources, taking advantage of ADIOS’ publish/subscribe
interface where users can federate data producers (sensors or simulations) and
consumers (analysis or visualization application) regardless of their locations. By
using real-world fusion data and analysis workflows from KSTAR and NSTX-U
as a use case, we demonstrate how we use Delta and ADIOS for real-world fusion
analysis workflows to federate experiment data and remote resources over wide
area networks and introduce recent AI/ML methods to be applicable for fusion
data streams.

Building on this framework, and the ideas and principles underlying it can
provide fusion scientists extended remote computing capabilities to accelerate
their current workflows, and make possible workflows not currently employed or
even imagined today. AI/ML can play a key enabling role in this regard, offering
the promise of faster, better analysis to provide scientists deeper insights and
guidance.
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Abstract. In 2015, CSCS and the Swiss national weather and climate
service (a.k.a. MeteoSwiss) have deployed the first GPU accelerated HPC
system for numerical weather prediction (NWP), which has been in oper-
ation since Spring of 2016. As part of the lifecycle management, an eight-
times more performant system that can support an upgraded model had
to be developed, but at constant cost. This new system is scheduled to
go into operation later in 2020. The performance of viable GPUs at a
given price has not been sufficiently increasing in recent years. With a
fixed budget envelope, the traditional design for operational NWP with
two, fully redundant and self-contained systems, was no longer viable to
support operations of the 2020–2024 model. We have solved the chal-
lenge with a software defined infrastructure concept from cloud infras-
tructure technologies, and designed a single system with builtin redun-
dancies that would meet reliability requirements with only 1.5 x the
number of (expensive) compute nodes needed for the operational NWP.
Specifically, concept of network tenants is introduced to define a produc-
tion, a failover/research-and-development (R&D) and a system test-and-
development tenant. Moreover, operational resiliency metrics are ensured
via transparent migration of components, similar to cloud environments
but with subtle differences to ensure bare-metal performance and scal-
ing of MeteoSwiss simulations. In the paper, we will describe the process
for designing and operating a cloud-technology driven, high-availability
operational HPC service in a cost-effective manner.
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1 Introduction

IT infrastructure for parallel HPC applications is characterised by high per-
formance processing units or servers, low latency and high bandwidth inter-
connect technology to serve scalable applications, and parallel file systems to
sustain compute and memory intensive workloads. Numerical weather predic-
tion (NWP) applications are among the class of scalable, compute and mem-
ory intensive workloads that have been benefiting from the architectural and
operational design features of high-end HPC or supercomputing ecosystems to
deliver at-scale performance in a cost-effective manner. Typically, national super-
computing IT infrastructures serve multiple scientific domains for research and
are designed for delivering a quality of service (QoS) that can be accomplished
with a batch scheduling system. In other words, there is no guarantee on an
immediate or time critical response times. Furthermore, to deliver an optimal
performing environment, these systems periodically go through scheduled down-
time for maintenance. The NWP service provider communities have historically
addressed these quality of service expectations by designing fully dedicated and
self-contained IT infrastructure for ensuring response times or periodic gener-
ation of simulation results, and by creating fully redundant IT-infrastructures
(often called production and failover for 2N redundancy).

Service delivery concepts in public and cloud computing environments
encompass various aspects. On-demand computing, auto-scaling, high availabil-
ity, multi-tenancy for isolation and security are just to name a few. Notwith-
standing the financial aspects of these service delivery options, the underpinning
technologies in hardware and software can greatly benefit NWP services. Specifi-
cally, the concepts of high availability of services through live migration of appli-
cations and periodic, on-demand access to resources are concepts that distinguish
a shared research IT infrastructure of a supercomputing centre from a shared,
multi-tenant, virtualised, software defined infrastructure of cloud computing. We
attempt to identify similarities and differences between a dedicated IT infras-
tructure for NWP service, shared research supercomputing facilities and cloud
computing. The dedicated NWP IT infrastructure is over-provisioned, much like
a cloud environment, to accommodate on-demand and exclusive access, with high
availability. However, unlike a multi-tenant cloud environment, the workload is
periodic and predictable. The payload is unlike cloud applications and requires
features of a highly performance and scalable bare-metal HPC clusters. If CapEx
and OpEx are not limiting factors, a dedicated HPC cluster plus its failover coun-
terpart can continue providing performance and dual (2N) redundancy that is a
common place for operational national weather forecasting services without the
complexity of software stack for cloud computing.

Processing requirements for operational NWP services have been increas-
ing at a much faster rate than computing and memory performance capabili-
ties. In 2015, CSCS and the Swiss national weather and climate service (a.k.a.
MeteoSwiss) have deployed the first GPU accelerated HPC system for numer-
ical weather prediction (NWP), which has been in operation since Spring of
2016. These systems delivered a 40x improvement over its predecessor systems
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that was introduced in 2012 by exploiting high memory bandwidth and com-
puting capabilities of GPUs. A great deal of investment in the development and
acceleration of the application software, namely the “Swiss” implementation of
COSMO, attributed to delivery and success of the solution. As part of the life-
cycle management, in 2019 an eight-times more performant system that can
support an upgraded model had to be developed, but at constant cost. This
new system is scheduled to go into operation later in 2020. The performance
of viable GPUs at a given price has not been sufficiently increasing in recent
years. With a fixed budget envelope (CapEx and OpEx), the traditional design
for operational NWP with two, fully redundant and self-contained systems, was
no longer viable to support the 2020–2024 model generation. We have solved the
challenge with a software defined infrastructure concept from cloud infrastruc-
ture technologies, and designed a single system with built in redundancies that
would meet reliability requirements with only 1.5 x the number of (expensive)
compute nodes needed for the operational NWP. We achieved an N+7 redun-
dancy for the computing services while maintaining a 2N redundancy for storage
services in a transparent manner to the end user by exploiting programmable
feature of the infrastructure.

In the paper, we will describe the process of designing and operating high-
availability operational HPC service in a cost-effective manner. Section 2 pro-
vides background to usage of HPC for NWP applications and workflows over
the years and recent developments for the convergence of cloud and high per-
formance computing technologies. Section 3 describes the core hardware and
software components of the system that contribute to performance and service
delivery expectations. Section 4 provides results from the operational setup.
Future outlook for exploiting cloud technologies is detailed in Sect. 5.

2 Background

A broad overview of data processing and computing for weather and climate sim-
ulations is beyond the scope of the paper. The focus is the operational workflow,
specifically for MeteoSwiss (the Swiss national weather and climate service),
which can serve as a representative model for different regional and national
short and medium term forecasting institutions. Likewise, an overview of cloud
computing as provisioned by public cloud providers like AWS, Azure among
others is not considered here. Attention is given to topics that are considered
somewhat complementary to a typical service delivery model of a national, open
research supercomputing platform.

2.1 HPC in Operational Workflows for NWP

The workflow for an operational weather forecasting system comprises of mul-
tiple steps including data assimilation, data processing, ensemble generation,
simulation, forecast generation, etc. The distinguishing features are generation
of products and services in a time constrained manner, which are then used by
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downstream customers. Operational weather forecasting services are offered by
different institutions such as European Centre for Medium-Range Weather Fore-
casts (ECMWF) [2], Australian Bureau of Meteorology [15], etc. to name a few.
Each site has fairly substantial and redundant supercomputing e-infrastructure.
For instance, ECMWF current operational environment is composed of two iden-
tical Cray XC40 clusters, each has 20 cabinets of compute nodes and supporting
storage ecosystem. The Australian Bureau of Meteorology has a similar setup
with redundant components to ensure resiliency for delivering 24 × 7× 365 oper-
ational service level agreements (SLAs). Each operational site is unique though
to fulfill its programmatic objectives. Similarly, MeteoSwiss IT infrastructure is
aligned with its own mission objectives and its investment profile.

The workflow of MeteoSwiss system is shown in Fig. 1. Different number of
ensembles and resolutions are run in different time steps. The validity period
of an output is critical and can only be accepted by the downstream applica-
tions within a certain time frame. These downstream applications often make
time critical decisions based on the outcome. Data processing and computing
requirements for a new model often depend on two factors: resolution of a model
and number of ensembles. For instance, in 2016, MeteoSwiss moved from a 2 km
single-trajectory model to a 1km single-trajectory plus a 2km ensembles result-
ing in 40x increase in performance requirements. Similarly, for the 2020 model,
MeteoSwiss requirements are increased by factor 8x due a combination of fac-
tors such as increase in resolution and ensembles to meet the demanding needs
of forecasting and downstream applications. Details are shown in Fig. 2.

Fig. 1. Workflow for MeteoSwiss comprises different steps highlighting simulation setup.
Number of ensembles vary, 40 for K or KENDA (1.1km), 11 for COSMO-E (1.1km)
and 21 for COSMO-E (2.2km). Presented by A. Walser (MeteoSwiss) titled ”COSMO-
E Update” at the COSMO General Assembly meeting, 2018, http://www.cosmo-model.
org/content/consortium/generalMeetings/general2018/default.htm. Note that the time
shown are simulated times for the forecast.

http://www.cosmo-model.org/content/consortium/generalMeetings/general2018/default.htm.
http://www.cosmo-model.org/content/consortium/generalMeetings/general2018/default.htm.
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Fig. 2. Comparison of the two models, current (COSMO NExT) and upcoming (Mod-
Interim) showing increased resolution for operational configuration. Presented by D.
Leuenberger (MeteoSwiss) titled “ModInterim: On the way to a new operational
COSMO configuration” at the COSMO User Workshop 2019, https://wiki.c2sm.ethz.
ch/COSMO/EventsCUW2019. The two models show significant changes for Alps for
forecasts ranging from 1 day to 5 d. Meanwhile, there are changes to the resolution of
mid-range European and global models by ECMWF. Collectively, there is an increase
both in terms of data ingested by ECMWF and subsequently computation, which is
estimated to be a factor of over 7 going from 2016 COSMO NExT to 2020 COSMO
ModInterim.

2.2 Convergence of Cloud and High Performance Computing

On-demand and auto-scaling are among the features highlighted by public cloud
service providers. The remarkable aspect is delivery of these services without
dedicated IT infrastructure for a wide range of customers, with diverse busi-
ness and operational sensitivities. Often the concept of multi-tenancy is used to
describe levels of isolation where applications share IT resources like CPU, GPU,
memory, storage and network. This is accomplished through different virtuali-
sation techniques and essentially a virtual system is build on top of the physical
infrastructure, like a virtual machine (VM). A VM is decoupled from the under-
lying hardware and can therefore be launched and migrated from one physical
infrastructure to other without a disruption to services. Software defined infras-
tructure (SDI) is often referred to a provisioning scheme where configuration

https://wiki.c2sm.ethz.ch/COSMO/EventsCUW2019
https://wiki.c2sm.ethz.ch/COSMO/EventsCUW2019
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of a system is defined in software, for instance, OpenStack [9]. OpenStack is
defined as a platform consisting of a number of software packages for deliver-
ing Infrastructure-as-a-Service (IaaS) in a data centre by controlling compute,
storage, and networking resources that are managed and provisioned through
standard, open-source APIs with common authentication mechanisms. In the
networking domain, similar management and control is called software defined
networking (SDN) [14].

Software stacks for virtualisation can come at an expense of performance that
needs to be achieved by the end-user application, specifically by HPC applica-
tions where close-to-the-metal performance matters. In fact, HPC applications
are often hand-tuned and optimised for a target HPC and supercomputing infras-
tructure. Recently, however, different devices are enabling virtualisation natively,
to ensure different service types and qualities such as isolation and performance.
In addition to CPUs or servers where support for virtualisation has become
a commonplace, component vendors such as network interfaces and switches
and GPU devices by Nvidia and AMD support single root I/O virtualisation
(SR-IOV). For instance, there are open source solutions for networking such as
Cumulus [6] as open software stack for network switches and Open Ethernet [4]
by Mellanox.

In short, the performance aspects of HPC and service features of cloud com-
puting are converging for hardware and software. Machine learning (ML) appli-
cations are said to be behind the momentum of introducing performance sensi-
tive features to the cloud computing stacks. This has opened up opportunities,
particularly, for operational weather and climate workflows where isolation for
performance and security, plus on-demand and on-time delivery of service are
key Quality of Service (QoS) requirements. SDI technologies can therefore be
adopted for delivering operational QoS with selected multi-tenancy features in a
cost effective manner within a shared environment as we demonstrate with the
recent MeteoSwiss platform.

3 Implementation Details

Designing a platform to deliver performance and the necessary QoS for all
aspects of the 2020 MeteoSwiss model comprised of multiple efforts. These
include designing a system architecture (with performance expectations and cost
constraints), operational integrity to deliver QoS and service level agreements
(SLAs), and application development and tuning for the new hardware target
(CPUs, GPUs, memory, network and storage). Maintaining end users and cus-
tomer (MeteoSwiss) operational interfaces was a high priority i.e. design features
should be transparent to platform users. Table 1 compares the IT infrastructure
for 2016 and 2020 platforms (note that investment or CapEx for 2020 is higher).
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Table 1. Comparison of 2016 and 2020 MeteoSwiss platforms for delivering COSMO
NExT and ModInterim respectively performance and operational expectations.

Component Total 2016 Total 2020 Difference

GPUs 192 Nvidia K80s
(dual K40 or 384)

144 Nvidia V100 Reduction of 48 GPU
devices or 240 GPUs

Compute nodes 24 18 Reduction of 6 nodes

Post processing nodes 10 15 Increase of 5 nodes

Login nodes 6 6 No change

High speed network 4 InfiniBand
switches

7 100 Gbs
Ethernet switches

Increase of 3 switches

Storage 2 Lustre file
systems

2 Lustre file
systems

No change

Racks 2 racks 3 racks Increase of 1

3.1 Functional Specifications-System Architecture

The functional requirements for the MeteoSwiss workflow includes:

– Compute nodes: these are dense GPU nodes that run the bulk of the NWP
application workflow and file I/O.

– Post processing nodes: these nodes perform majority of post processing oper-
ations running both multi-threaded and serial I/O intensive applications.

– Operational storage: this supports applications running on operation compute
and post processing nodes.

– High speed network (HSN): this is required for MPI and I/O workload per-
formance and connectivity.

– Operating environment: this include the validated environment for appli-
cations in the production workflow including a secure OS, network and GPU
drivers, and resource management and scheduling system (with custom MPI
task to GPU mappings).

– Programming environment: the validated environment e.g. compilers and
libraries for operational suite must be available and functional.

The above are typically described as components that are needed in the
emergency operation mode because the MeteoSwiss IT infrastructure supports
additional research and development (R&D) tasks. In fact, the failover system
is normally used as an R&D platform for developing future models while the
operational platform is dedicated for regular and periodic delivery of forecasts.

The building blocks for the architecture are shown in Fig. 3 highlighting
production, R&D and test and development system (TDS) as unique clusters.
While some components like storage and interconnect are fully redundant, the
underlying architecture is provisioned and managed as a single infrastructure.
Attention has been given to the isolation of production cluster tenant (to fulfill
functional and performance SLAs) and to automate failover process of hardware
components.
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Fig. 3. Architecture comparison for current and future operational MeteoSwiss sys-
tems. In the current (2016) system, full operation is moved to the failover cluster in
case of planned and unplanned events. The future (2020) operational model allows for
failing over components. Three key advantages of 2020 system includes N+6 redun-
dancy of computing components as opposed to 2N, a software-defined failover of net-
work components and a management/system TDS tenant. Failed parts (denoted by
X) can be repaired and return to service in the R&D tenant.

3.2 Operational Specifications-Software Defined Infrastructure

The high level 24 × 7 × 365 operational specifications for the cluster include:

– Minimum number of computing nodes and GPUs must be fully oper-
ational for delivering operational model (resolution and ensembles).

– Minimum number of post-processing nodes must be fully operational
for delivering operational model (resolution and ensembles).

– Operational storage must fulfill functional and performance requirements
for applications running on compute and post processing nodes.

– HSN for compute and post processing nodes must deliver functional and
performance requirements.

– Internet connectivity: a secure network connection must be available to
transfer observational data and models to the cluster and to extract products
from the cluster.

– Availability of validated operating and programming environment for the
operational suite.

Historically, clusters to deliver operational services have been constructed as
two identical clusters, where one would serve as production and other as a failover
for 2N redundancy. Processes are then set in place to migrate services (note that
no HPC applications are being migrated) in case of scheduled and unscheduled
down times, from one cluster to another. In contrast, our proposed scheme main-
tains an operational cluster (operational tenant) without service downtime by
migrating components from other, much smaller R&D cluster (R&D tenant)
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(no migration of applications). These clusters are tenants in a two-tenant IT
infrastructure where there is a level of sharing (described below) while main-
taining full isolation as separately provisioned clusters. In short, creation of the
cluster is not a one time operation but rather a programmable workflow for
maintaining its dimensions to fulfill MeteoSwiss operational requirements while
managing incident and changes (scheduled and unscheduled) to the IT infras-
tructure.

Fig. 4. Network configuration to support multi-tenant, high availability clusters for
the MeteoSwiss operations. A high-level of redundancy for networking components
ensures HSN performance for parallel, MPI applications and storage. Ghost nodes
prevent a need for manual configuration and management, where a node from one
tenant can be added to the production Slurm cluster with its image and file mounts in
a programmable manner, without privileged (root) access.

Only network level virtualisation is considered for the MeteoSwiss operational
system allowing sharing and isolation of multiple cluster tenants. Four virtual
networks are created namely production, R&D or failover, system TDS and
management. Figure 4 depicts the high speed network design to support HPC
applications on production and R&D tenants. Each compute server and post-
processing server has a dual-rail setup, which is bonded to support failover and
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performance for MPI and storage traffic. We use RDMA over Converged Ether-
net (RoCE) is a network protocol that leverages Remote Direct Memory Access
(RDMA) capabilities to accelerate communications between applications hosted
on clusters of servers and storage arrays [7]. Programmability and automation
are keys for exploiting a software defined infrastructure. The following failure
scenarios are considered for automatically maintaining the operational cluster
profile (by migrating nodes and failing over redundant components):

– compute nodes: one or more compute nodes or servers (up to 7) can be taken
out of service for any issue (software, CPU, GPU, network card, etc.). Previ-
ously, the headroom was one node within each cluster.

– post processing nodes: up to 7 nodes can be out of service. Previously, the
headroom was one node per cluster.

– high speed network switch: same as before, 2N redundancy.
– operational storage: same as before, 2N redundancy.

3.3 COSMO Application Development

The Consortium for Small-Scale Modeling (COSMO) members are seven Euro-
pean national weather services which aim to develop, improve and maintain a
non-hydrostatic local area atmospheric model [1]. The COSMO model is used for
both operational and research applications by the members of the consortium
and many universities worldwide [11]. In order to sustain performance portabil-
ity across diverse computing targets such as multiple generations of multi-core
CPUs and accelerator devices like GPUs, the application has been refactored
by developing domain specific libraries. Details of such efforts are provided in
[11] and [13] including performance and scaling results from both MeteoSwiss
current operational systems and a supercomputing platform called Piz Daint,
which is a Cray XC50 system with Nvidia GPU devices.

During the preparation of the operational readiness phase for ModInterim,
one of the key step was to replace the domain specific library from STELLA [12]
to GridTools [3,8]. STencil Loop LAnguage (STELLA) is a C++ embedded-
domain specific library that allows the user to write code for the COSMO model
that is agnostic of the target hardware architecture. The GridTools (GT) frame-
work is a set of libraries and utilities to develop performance portable applica-
tions for weather and climate simulations not bound to the COSMO model. Its
design goals are to allow to better engineer the application and improve code
reusability. In GT, stencil operations on regular and block-structured grids (as
are commonly found in the weather and climate application field) are central.
GT provides a useful level of abstraction to enhance productivity and obtain
excellent performance on a wider range of computer architectures with respect
to STELLA, since GT provides a better separation between front-end and back-
end, thus allowing new back-ends to be introduced relatively quickly. GT also
provides means to perform efficient halo-update operations to run in distributed
memory architectures. The development and integration of GT with COSMO
was critical in achieving performance expectation from the new generation of
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Nvidia GPUs namely Volta and the new high bandwidth and low latency inter-
connect called NVLink [5]. Specifically, the timelines of the operational workflow
that is depicted in Fig. 1 required completion of each member of COSMO-E sim-
ulation within a fixed time window. Hence, there were strict performance goals
that must be achieved for the 24 × 7 operating environment with multiple ensem-
bles over and over again. The software defined infrastructure setup can, in no
way, deteriorate performance behaviour of computing, networking and storage
(file I/O) operations for the MeteoSwiss operational suite.

4 Results

A number of failure scenarios are evaluated to ensure the desired level of redun-
dancy within the operational time constraints. Moreover, extensive tuning is per-
formed with the GridTools-based implementation of COSMO, in order to ensure
performance constraints can be maintained within the strictly time-constrained
window in operations.

4.1 Resiliency Expectations

The expected resiliency of the system in case of different failure scenarios is listed
in Table 2. These scenarios are compared with existing 2N failover cluster setup
(2016 operational system) and N+X setup for 2020 operational configuration.
Except for the facility related scenarios, which are similar for both systems within
the data centre, the 2020 system allows for more fine-grain failover options.

Table 2 does not specify the user or admin intervention i.e. whether some sce-
narios require no human-in-the-loop, an unprivileged intervention by operational
users, or a privileged, system admin alerts and access controlled operations.
Majority of network level operations are fully automated as the open software
stacks and APIs of the switch allow for implementing the logic for maintaining
the QoS of the operational tenant. Failure or performance regression of compute
and post processing nodes can be triggered by a script that is executed by the
MeteoSwiss operator where a replacement node can be reconfigured on-demand
for the operational slurm cluster. System admins receive alerts for failures and
regressions. They are required to intervene for immediate recovery of service for
issues that are not covered in the Table 2.

4.2 Performance Expectations

The most computationally intensive component of the NWP forecast workflow
is the COSMO model simulation. The target timings, see Table 3, have been set
depending on the estimated time of the other components and the requirement
for the time critical products. When designing the new system the benchmark
used were based on the COSMO-E (1.1 km) and COSMO-E (2.2 km) forecast
component, while the data assimilation component KENDA was not included.
In the original implementation of the assimilation code for GPU several parts
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Table 2. An analysis of failure and performance regression scenarios comparing a 2N
redundant system and a system with N+X redundant components. Note that single
failures of components are considered. The 2020 system allows for combined failure
scenarios where an operational tenant can continue to operate without physically parts
unlike the predecessor 2016 system. Failure management times are recorded by induced
and simulated failures to ensure service recovery times are within the SLAs.

Failing component or
regression

Impact 2016
platform

Impact 2020
platform

Management of
operational Resiliency
2016 vs. 2020

Full rack None (one rack
failure)

none (one rack
failure out of 3
in total)

move to failover cluster
(2016) vs. operational
cluster tenant recreated
with remaining spare
components (2020)

Single GPU node none none utilize spare node within
cluster (automated)

Multiple GPU nodes
(operational cluster)

none (limit 3) none (limit 7) move to failover cluster
(2016) vs. cluster tenant
claims spare GPU nodes
(2020)

Single PP node none none move to failover cluster
(2016) cluster tenant
claims spare PP nodes
(2020)

Multiple PP nodes
(operational cluster)

none (limit 2) none (limit 7) move to failover cluster
(2016) cluster tenant
claims spare PP nodes
(2020)

Single login node none none spare node available all
the time

Multiple login nodes
(operational cluster)

none (limit 2) none (limit 2+) cluster failover triggered
for 2016 and 2020 (new
feature: login nodes can
be re-provisioned for
2020 )

Operational storage none none cluster failover triggered
for 2016 and 2020

Operational switch
(core/spine)

none none cluster failover triggered
for 2016, automated for
2020

Operational switch (leaf) N/A none automated for 2020

Management switch none N/A cluster failover triggered
for 2016, separate VLAN
of operational switch in
2020

Management nodes none none cluster failover triggered
for 2016, 2+1 redundancy
before failover in 2020

Facility 100% 100% single data centre
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were still running on CPU, requiring constant data transfer between the CPU
and the GPU. On the old, 2016 COSMO-NExT model, running on the previous
generation system called Kesch, there was a single 1 km model-trajectory run-
ning on 72 GPUs. With a relatively small MPI sub-domain per GPU this was
not an issue (fitting into the GPU memory). However, in the new 2020 Mod-
Interim setup on the current system, the 1 km system runs on 8 GPUs. MPI
sub-domain per GPU become a critical bottleneck (72 K40 to 8 V100 GPUs).
Initially, performance measurements on the KENDA components appeared to
be about 2x slower then the target timing as shown in Table 3.

The model was carefully optimized regarding data movement in the assimi-
lation part, which enabled reduction of run time in this part from 46% to below
9% of the total KENDA run time. The model was further adapted so that
KENDA assimilation could run in single precision. Additional optimizations in
the OpenACC code as well as the transition from the STELLA dycore to the
GridTools dycore led to further performance improvements. These optimisation
steps achieved very close to the target timings required for the ModIterim oper-
ational targets. The remaining differences between the target timings and the
optimized COSMO timing are compensated by additional improvements in the
workflow. This part of the optimisation depend on close-to-metal performance
features of CPU, GPU, memory hierarchies and I/O subsystems including inter
and intra-node MPI latencies and bandwidth.

Table 3. Optimization of COSMO component to achieve ModInterim performance
targets. All timings are in seconds.

Component Target After optimisations Before optimisation

KENDA 640 660 1380

COSMO-E (1.1 km) 3300 3310 3590

COSMO-E (2.2 km) 2700 2730 2970

5 Future Work

Convergence of cloud and HPC technologies has opened up several opportunities
to rethink delivery of NWP services, not only for cost-efficiencies on dedicated IT
infrastructure but also for future, on-demand and auto-scale distributed research
infrastructure. Here are a few near- to mid-term possibilities:

– Containerised HPC workloads: the containers technology for HPC has
been investigated over the past few years [10]. The workflow can have several
advantages namely reproducibility with underlying changes to programming
environments and ability to spawn workflows at cloud facilities.

– Containerised workflow: the next steps after successful containerisation
of compute, data and IO intensive workloads, is the containerisation of the
entire NWP workflow including a number of pre- and post-processing and
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analysis applications. Such a containerised workflow could potentially allow
for the migration to public and private cloud installations that support OCI
and HPC resource management systems.

– Multi-tenancy and Infrastructure-as-code: the current installation
enables sharing of multiple network interfaces to allow failover of compo-
nents. Users of production and failover systems see isolated clusters. These
concepts can be extended to a public or private cloud environment that allow
for creating HPC clusters in non-dedicated environments.

– On-demand, auto-scaling and highly resilient services: These are cur-
rently unsupported functionality at many HPC centers due to the investment
and operational constraints of dedicated IT infrastructure. With containerised
workflows and software defined infrastructure, it would be feasible to deploy
clusters for NWP on non-dedicated cloud infrastructure on-demand, extend
them as needed and to have multiple failover options to improve resiliency
(taking into consideration both technical/performance and financial consid-
erations).
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Abstract. Application workflows use files to communicate between
stages of data processing and analysis kernel executions. In large-scale
high performance distributed systems, file based communication signifi-
cantly penalizes performance by introducing overheads such as meta-data
access, contention for file locks, and slow speed of spinning disks. Using
files as system wide persistent storage also hinders fine-grained access
to data when files are stored on block devices handled through the I/O
software stack. To address speed and granularity, we employ persistent
memory (PMEM) devices, which provide DRAM-like speeds and byte
granular access combined with persistent storage capabilities. To address
file and I/O software stack overheads, we deploy an Arm-based Mellanox
Bluefield SmartNIC with attached NVDIMM-N modules. Both Smart-
NIC and PMEM introduce API design and system software integration
challenges. We address this with the design and implementation for an
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to the OpenSHMEM library. We benchmark the implementation using
a workflow of invocations of OpenSHMEM kernels on a persistent data
set. Compared to the same workflow using a network file I/O client, our
solution shows no degradation of performance as the number of clients
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reducing the time to move file data in and out of OpenSHMEM pro-
cess memory to the speed of one-sided memory access. We also support
the creation of many small files with minimal overhead. OpenSHMEM
workflows can leverage these changes to create more, shorter lived kernels
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1 Introduction

Traditional high performance distributed applications use program data stored
in RAM for computation while relying on file I/O to disk-based storage to ensure
data persistence. The slow speed of file I/O compared to memory means that
data-intensive computations suffer under this model when data persistence is
ensured. The emergence of SmartNIC programmable network cards in the hard-
ware stack allow a new mechanism to provide persistent data access to applica-
tions. In particular, we can use SmartNIC hardware to accelerate the I/O needs
of workflows.

A workflow model is common in data analysis applications; workflows use
file I/O as a universal communication medium between independent applica-
tion kernels. For example, a common type of graph analytics workflow executes
stages of analysis kernels on a large persistent graph; the result of each stage
determines the actions of the next stage [5]. Workflow models are robust in the
event of power failure, since the data and workflow meta-data are stored in per-
sistent files. Other conveniences of file based persistent data include ubiquitous
language compatibility, ability to rewind and redo stages, and ability to move
computations between systems.

Workflow models are convenient, but distributed file I/O incurs overheads
from such factors as slower disk hardware, meta-data updates, and ordering and
visibility of shared reads and writes. Emerging non-volatile (NVM or NVMe)
and persistent memory (PMEM) provide higher speed disk hardware. In this
work, we use the term PMEM to mean byte addressable devices with DRAM-
like speeds. We use NVM to mean non-volatile memory in general; NVM disks
means block addressable NVM. To accelerate file access, large system designs
increasingly place NVM disks throughout a system close to the network fabric
to relieve file system pressure [6].

In this work, we add the hardware capability of a SmartNIC loaded with
PMEM to provide workflows with low overhead, in-network access to persis-
tent data. The hardware is exposed to applications through an API to setup
and access data using one-sided remote operations. The API is supported by a
lightweight server that can run on a SmartNIC.

This paper makes the following contributions:

– An OpenSHMEM [1] interface allows applications to define persistent dis-
tributed data sets that support byte-level access over RDMA networks.

– An OpenSHMEM interface that enables dynamic connections to a remote
PGAS address space using a server-client API while preserving OpenSHMEM
memory semantics.

– A PGAS storage server implementation based on the UCX network library
[12,14] for RDMA SmartNIC appliance with NVDIMM-N PMEM storage

– Performance evaluation using a server running on a Mellanox Bluefield Smart-
NIC with NVDIMM-N PMEM and an OpenSHMEM application running on
a Marvell ThunderX-2 platform.
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Section 2 describes where this work fits into the scope of other work in high
performance application support for large persistent memory spaces. Section 3
describes how this I/O interface is implemented as a client-server design. Section 4
provides results and analysis of testing the implementation using an OpenSH-
MEM benchmark that executes a basic workflow model. Finally, Sect. 5 summa-
rizes results and conclusions.

2 Background

There are several notable works on APIs for distributed byte-addressable non-
volatile memory. The OpenFAM API [4] is an OpenSHMEM-inspired API that
provides access to non-volatile memory storage. Nevertheless, this work does
not present the implementation or performance evaluation of the API. In [10],
Rivas-Gomez et al. present a persistent co-arrays implementation based on the
MPI Storage Windows [9] concept using NVMe SSDs over the distributed GPFS
file system. Dorozynski et al. [2] demonstrate how byte-addressable non-volatile
RAM can be used for application checkpointing using persistent memory simu-
lation using DRAM. In [13], Shan et al. explore a Linux kernel-based approach
for implementing distributed persistent shared memory and present an evalua-
tion based on persistent memory simulation using DRAM. Similarly, Lu et al.
[7] explore an user-space distributed persistent file system implementation and
evaluates it using persistent memory simulation using RAM. Burst buffers [6]
is another file system based approach that implements a layer in a file system
that can absorb bursts of I/O communication using fast persistent memory stor-
age. Our implementation contrasts these prior studies in the following two ways.
First, our implementation puts PMEM storage and data layout strictly within
OpenSHMEM semantics. Second, our evaluation uses NVDIMM-N memory and
a Mellanox Bluefield SmartNIC.

3 Design

We have implemented a client API and a server to support the API. This imple-
mentation demonstrates partitioned persistent data access over fabrics supported
by the UCX library.

We extended the OpenSHMEM communication library, which provides
semantics to define a strictly symmetric space across all processes in a com-
putation. High performance applications can take advantage of the assumption
of symmetry to avoid consensus and translation overheads. OpenSHMEM appli-
cations communicate between processes using processing element (PE) numbers.
Each PE has a unique number and can perform remote memory operations (such
as put and get) to memory on other PEs using the PE number and a remote
memory address.

Our OpenSHMEM I/O extension presents PMEM devices to applications via
a symmetric file space or “fspace”. Memory regions on PMEM devices are given
their own OpenSHMEM PE numbers, transparently granting fspace data the
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existing OpenSHMEM remote memory access (RMA) semantics. Unlike the core
OpenSHMEM model, the fspace extension does not require all PE numbers be
assigned during library initialization (shmem init). Instead, any OpenSHMEM
PE can, at any time after shmem init, connect as a client to an fspace server via
host IP and port. That connection initiates an exchange of remote memory access
keys that are assigned on the client PE to new, unique remote PE numbers.
The client PE then accesses persistent fspace data with OpenSHMEM RMA
operations, using the fspace PE numbers and memory addresses assigned to
fspace files.

This I/O model leverages the existing strength of OpenSHMEM’s global view
of memory partitions accessed by PE number, but breaks symmetry for fspace
data to avoid an unscalable requirement that every file be accessible to every PE
in a symmetric manner. Files can be laid out across any striped subset of fspace
PEs, so files are not created with the same semantics as shmem malloc. These
changes are in line with ongoing evolution of the OpenSHMEM standard to
support more dynamic process groupings, i.e. the OpenSHMEM teams extension.

3.1 Client-Side Interface

The client API was completely defined prior to implementation. Very few API
modifications happened during implementation. So, this is not an “organic” API
design. None of the operations are collective operations.

Connect & Disconnect. Client connections purposefully break the OpenSH-
MEM notion of global PE numbering. For example, one client PE may connect
and view an fspace as remote PEs 16–31, whereas another client PE may view
the same fspace as PEs 32–47. Global numbering can be addressed later in
extensions to design collective connections. In this version, connections are non-
collective so that systems can integrate low-compute devices, such as SmarNICs,
in a heterogeneous fashion and control I/O access through subsets of PEs that
are “near” to fspace servers.

shmem fspace conx t structure provides a host address and port for the
fspace server.

shmem fspace t shmem connect(shmem fspace conx t* conx) connects to
an fspace. On successful connection, a handle to the fspace is returned. The
program can test the returned handle against SHMEM FSPACE NULL to check if
the connection was successful.

int shmem disconnect(shmem fspace t fspace) disconnects from the
fspace, closes any open files on the client, and releases server and client resources.
This is called automatically for all connected fspace during shmem finalize

Fspaces & Files. shmem fspace t is an opaque handle to an fspace. A client PE
receives this handle when it connects to an fspace server. The fspace connection
operation adds a unique range of PE numbers to the client. These PE numbers
are used to access file data in the fspace.



322 M. Grodowitz et al.

shmem fp t structure represents an open file in an fspace. The structure con-
tains fields describing a subset of PEs in fspace, a file size in bytes, a base address
used for remote memory operations, a contiguous unit size for striped files, and
event timestamps for last open, last flush to persistence, and last modification
to size or layout.

Files are laid out symmetrically with respect to a subset of fspace PEs. Say
file X is stored on PE 16–19 as indicated by the shmem fp t. If a client PE can
access file X data at remote address A on remote PE 16, then there is data for
file X at remote address A on PEs 17,18,19 as well.

Fspace files are not POSIX compliant, nor do they provide I/O streams.
There is no notion of current file pointers or seek operations. The client uses a
base address and offset calculations to do remote operations on file data. Fspace
files enforce read/write ordering and visibility between processes through existing
OpenSHMEM semantics.

So, Files are a hybrid memory allocation and file; they provide memory speed
access similar to a remote heap, combined with minimal lightweight synchroniza-
tion and meta-data management suitable for network edge devices. Streaming
I/O and POSIX compliance could be interesting future work.

Open, Close, & Stat. Just as with connections, file open and close commands
are performed per PE. These routines are not collective operations. They do
provide some basic synchronization around file access so that PEs do not need
to use other OpenSHMEM synchronization mechanisms in order to use fspace
files.

shmem fp t* shmem open(shmem fspace t fspace, const char *fname,
size t fsize, int pe start, int pe stride, int pe size,
int unit size, int *err) opens a file in an fspace. This call has the most
dynamic behavior in the API and acts as a hybrid of a traditional file open
operation and a symmetric memory allocator.

The string fname is used as a unique key to identify the file. If the string
matches a file that already exists in the fspace, all other size and layout argu-
ments are ignored, and the returned shmem fp t structure will reflect the existing
file attributes. So, if a PE opens a file, any subsequent PEs that open the same
file will get a reference to the same memory.

If fname does not match any existing file in the fspace, the server attempts
to allocate fsize bytes symmetrically across pe size PEs in the fspace, starting
with pe start with a stride of pe stride. The data is allocated in chunks of
unit size in a round robin fashion across PEs, as is done in Ceph [15]. If the
indicated layout is not available or is invalid, the server will attempt to allocate
the requested number of bytes in any manner. The actual layout is returned in
shmem fp t. The client may set any layout argument to −1 to allow the server
to set that value.

If fname indicates a valid file path visible to the fspace server (but not neces-
sarily visible to the PE), the fspace server will use that path as the backing file.
Data will be loaded from that path into the allocated file space, and stored back
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to that path when the file is flushed from the fspace. Files remain in the fspace
until the PE explicitly removes them or when the server removes them. When a
file is open by any PE, that file cannot be moved or shrunk by any other PE or
the server. These actions would invalidate that PE’s mapping of the file.

int shmem close(shmem fp t* fp, int ioflags) closes the file and
releases server side resources for the calling PE. The ioflags argument indi-
cates modifiers regarding what to do with file data on close. See Table 1 below.

int shmem fp stat(shmem fp t* fp) updates the attributes in the
shmem fp t structure. The routine will always return the same or newer
attributes for a file, so timestamps will not go backward, nor will size go down.

I/O Flags, Flushing and Synchronization. Routines to close, flush, or trun-
cate files accept flags to modify behavior for flushing file data and synchronizing
operations when multiple PEs have opened the same file.

Table 1. I/O Flags used for close, truncate, or flush

DEALLOC Remove the file from the fspace

POP FLUSH Flush the file to the point of persistence

DEEP FLUSH Write back the file from PMEM to the path indicated by
the file name

WAIT Wait for all other clients to close the file, then perform the
operation

A PE can request to deallocate the file and remove it from the fspace on
close. This will fail if other PEs currently have the file open.

The wait flag is a novel feature of this interface. This flag provides a mech-
anism for file routines to act as collective synchronization points between PEs.
A PE can close, flush, or truncate a file using the wait flag. This indicates to
wait for all other PEs to close the file, then perform the operation. Using wait,
applications do not need to use other synchronization structures like barriers, or
provide other PE grouping, like teams.

Flush operations are particularly important in implementations such
NVDIMM-N where the PMEM device uses both volatile and non-volatile mem-
ory. In this case, flushing the file to a point of persistence incurs overhead while
data from volatile memory is backed up to non-volatile state. In other hardware,
even if writes are guaranteed persistent at the memory module level, there may
not be a way to guarantee that a write over RDMA has reached the point of
persistence on a remote host. In that case, the POP FLUSH would be more like
a quiet operation, but would involve the fspace server to ensure persistence of
data at a remote memory module.
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Flush, Extend, & Truncate. A PE can move or resize files stored in the
fspace as long as these operations do not invalidate open file handles on other
PEs.

int shmem fp flush(shmem fp t* fp, int ioflags) flushes a file to a
persistent state, to backing storage, or out of fspace, depending on flags. The
PE will block until the operation is complete.

int shmem ftrunc(shmem fp t* fp, size t bytes, int
ioflags) resizes the file to the indicated size. The file may change location
during this operation, so the PE should check the file address and layout after
truncate.

int shmem fextend(shmem fp t* fp, size t bytes) increases file size to
the indicated new size if space allows. The file may change location during this
operation, so the PE should check the file address and layout after truncate.

3.2 Server Daemon

The server is designed to wait for PE client-initiated actions while consuming as
little resource as possible. It uses the UCX client-server and streaming protocols
to establish listeners on ports using IP over IB (IPoIB), so the implementation
can use one InfiniBand fabric for control and data.

Server Actions. The server passively waits for control traffic for file open,
file close, flush, stat, extend or truncate operations. Control requests cause the
server to return from the ucp wait command, where it sleeps in a low power
state using the WFE instruction [11].

When a PE opens a file, the server receives an open request and sets up a
region of PMEM and potentially loads data from a backing file. After passing
back the file handle information, the server is not involved in file access opera-
tions. The server tracks all open file handles on PEs so that truncate, extend,
and flush operations do not invalidate open file handles. If a PE disconnects from
the server, the server will release that PEs file handle.

The server implements the flush command by iterating over file data to issue
the DC CVAC instruction available on Arm v8 and newer. This instruction pushes
a cache line to the point-of-coherency. Arm v8.2 provides a new instruction DC
CVAP that implements flush to point-of-persistence semantics, but it is not avail-
able on Arm Cortex-A72. For the Mellanox Bluefield SoC (Arm Cortex-A72)
implementation, the point-of-coherency is also the point-of-persistence. There-
fore, we can safely use DC CVAC instruction. Currently, our implementation does
not track which data in the file has changed since the last flush, and flushes all
cache lines for a file.

3.3 Server Subspaces

The server internally implements subspaces of the fspace to accommodate client
requests for file layouts. These subsets are similar to the OpenSHMEM v1.5
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teams concept, but only exist on the server. They are dynamically created in
response to file open requests. When a client requests a file layout, the server
will try to allocate the file in an existing subspace with that layout. If this fails,
the server will try to create a new subspace with the requested layout. If this
fails, the server will allocate the file in any available space that has room. The
resulting subspace layout is sent back to the PE client in the file handle.

3.4 Client-Server Mechanisms for Remote Access of Fspace Data

When a PE connects to an fspace, it receives the meta-data required to access
remote PMEM. This includes UCX remote access keys and remote addresses to
support one-sided remote operations.

Pseudo Addressing by Client PE. The fspace design break the OpenSH-
MEM notion of PE address space symmetry for similar reasons that design
breaks global PE numbering. A client PE is not required to have symmetric
data to fspace PEs. Otherwise, connecting to an fspace would require a PE to
allocate ranges of local memory just to provide some alignment with remote file
data. Instead, a client PE allocates ranges of addresses to use for fspace access
when it connects.

Allocation is a trivial local operation since a PE number is supplied during
any remote access. Each PE number maps uniquely to either another compu-
tational PE or exactly one fspace PE. So, a client PE assigns pseudo-address
ranges on a per fspace basis. To resolve a remote memory access, the client PE
uses the remote PE number to select the correct mapping of supplied address to
actual remote address.

Client PE Uses Fspace PE, Server Subspace To Resolve Access. For
fspace PEs, the client PE only maintains pseudo address mappings for the sub-
spaces that it requires, not the whole fspace. The fspace server lazily creates
subspaces (RDMA mapped symmetric PMEM regions) to support different file
layouts. A PE lazily maps symmetric subspaces to pseudo-addresses only when
it opens a file in that subspace.

Suppose a client PE has opened a file with a base address A, size S, located
on PE 6 and 8 in an fspace assigned to remote PEs 6–10. The client PE is
ensured that all accesses to address ranges A to A + S ÷ 2 on PE 6 and 8 will
access data for this file.

Suppose the client PE accesses A on PE 8 with an OpenSHMEM put oper-
ation. The client PE resolves PE 8 to an fspace. Then, the client resolves A to
exactly one subspace, which will be striped over PE 6 and 8, since all fspace
file layouts are subspace layouts. The client PE resolves A to its subspace by
range lookup of A within the fspace. Then translation through the subspace local
base pointer and remote address results in an issue to remote access of address
A−B + A‘ using subspace rkey R.
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Note that the file is never part of the control logic. This is intentionally done
to support existing OpenSHMEM remote access routines, which take only PE
number and address arguments. As a consequence, there is a client-side calcu-
lation to resolve the address to the corresponding subspace, i.e., file layout. So,
the more file layouts that a client generates within an fspace, the more overhead
is incurred during remote access to resolve the address. However, there is zero
added access time overhead for accessing many small files within a subspace.
Also, there is no semantic requirement for the server to provide file layout as
requested. So, address resolution overhead can be tuned on the server side by
restricting the total number of subspaces.

Regarding file permissions under this model, any kind of data access control
would need to be done at the subspace level and not the file level. We leave data
protection concerns to other work.

3.5 Software Implementation Details

SHMEM FSPACE Extension OSSS OpenSHMEM

Open UCX

Marvell ThunderX-2
Arm v8

UCX Direct
Transport

UCX Verbs
Transport

Verbs

Mellanox ConnectX

OpenSHMEM Client

FSPACE Server

Open UCX

UCX Direct
Transport

UCX Verbs
Transport

Verbs

Mellanox BlueField SmartNIC (Arm v8)

FSPACE Server

PMEM
(NVIDMM-N)

DAX

Fig. 1. OpenSHMEM client and server software-hardware stacks for our
implementation.

Figure 1 provides a high-level overview of our software stack implementation.
The client implementation is integrated into the OSSS OpenSHMEM library
[8] implementation. OSSS is the open source reference implementation of Open-
SHMEM API driven by Los Alamos National Laboratory in collaboration with
Stony Brook National Laboratory. We chose OSSS because it is a lightweight,
easily extensible implementation of the current OpenSHMEM standard directly
on top of the UCX communication library.

The fspace server is implemented using the UCX library; it stands alone
from OpenSHMEM. UCX is an open source communication middleware library
that provides high performance communication services over shared memory,
InfiniBand/RoCE, and TCP. UCX exposes point-to-point one-sided communi-
cation semantics that closely matches the OpenSHMEM API. The library is well
tested on Arm v8 platform and is supported by Mellanox, AMD, Arm, IBM, and
Nvidia.
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The server interface to PMEM is built on the DAX file system mechanisms
in the Linux kernel. A file system (e.g. EXT4) is created on a PMEM device
and mounted with the DAX option. Files are created in the file system and then
memory mapped into a process. The DAX option causes the memory mapping
to generate a range of virtual addresses that resolve directly to the PMEM
device. By contrast, a memory-mapped file in a non-DAX file system resolves
to a buffer in the Linux block cache, which is periodically sync-ed back to the
block storage device. To allow remote access to this memory-mapped file, the
server registers the memory-mapped region for RDMA access using the UCX
library. To enable RDMA memory registration in combination with the DAX
file system, we use UCX’s on-demand memory registration features. This is the
only memory registration mechanism that works in combination with the DAX
file system.

4 Implementation Results

Fig. 2. Experimental setup

To test our implementation, we constructed a testbed of two systems, shown
in Fig. 2. On the left, a Mellanox Bluefield SmartNIC development platform
(“Bluewhale”) runs NFS and fspace servers. On the right, an HPE Apollo 70
system runs the OpenSHMEM client code.

The Bluefield software stack includes CentOS Linux 7.6.1810 and a cus-
tomized 5.2.1 Linux kernel. The kernel was patched with the most recent fixes
for PMEM support on Arm so that the NVDIMM hardware type presented
by the firmware at boot would load the PMEM Linux driver and present
the device as both storage and memory. We used the CentOS distribution
libibverbs-22.1--3.el7 as the user space RDMA driver interface.

The Bluefield hardware stack includes a SoC with 16 Cortex-A72 process-
ing cores, a 16GB embedded flash drive, 16GB of DDR4 and a 16GB DDR4
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NVDIMM-N preproduction module. To install the NVDIMM-N module, we
installed a patched firmware version on the Bluefield BMC to enable recognition
of the NVDIMM-N save pin so that it would be presented to the OS as persis-
tent DIMM type. The NVDIMM-N JEDEC standard describes an energy backed
byte addressable module; it uses DRAM technology with onboard flash so that
data can be flushed from volatile to non-volatile memory by several mechanisms.
The NVDIMM-N module is connected to a separate battery power module in
the chassis so that data can be flushed from volatile to non-volatile in the event
of power failure. This SmartNIC is built on a ConnectX-5 100GB/s InfiniBand
adapter, firmware version 18.24.1000.

The HPE Apollo 70 system runs Red Hat Enterprise Linux Server 7.5 based
on 4.14.0–49.el7 Linux kernel. We installed the Mellanox OFED 4.6-1.0.1.1 driver
distribution for InfiniBand drivers and user library support. The client Open-
SHMEM application is built against our modified version of the OSSS reference
implementation of OpenSHMEM, which uses the UCX v1.5 library as the low
level communication layer.

The HPE Apollo 70 system is equipped with two 28-core pre-production Mar-
vell ThunderX2 SoCs clocked at 2GHz. Each core is SMT-configurable allowing
up to 4 threads. For these experiments, SMT is configured to run 1 thread per
core, which is standard practice for HPC system configurations due to high per-
core communication requirements. It has 256GB of main memory as 16 × 16 GB
DDR4 modules, with 8 memory channels per socket. For network connectivity,
we have installed a Mellanox ConnectX-4 100Gb/s VPI adapter, firmware ver-
sion 12.26.1040. Since we use preproduction system components that are released
in limited quantities, the scale of our evaluation is limited to two machines. Once
the hardware is generally available, we plan to extend scale of the evaluation.

4.1 Graph Update Workflow Benchmark

We designed a workflow benchmark for a graph kernel by modifying an existing
OpenSHMEM implementation of integer bucket sort to work on graph edges.
This type of sort is described as a part of a workflow for analyzing distributed
graphs using linear algebra primitives [3]. In that work, the edges are distributed
across all of the processing elements in an OpenSHMEM application.

A semantic graph data structure is defined as G = (V,E), where G is the
graph, V is the set of vertices, and E is the set of edges. Each edge is defined as
E = (V1, V2), where V1 and V2 are two vertices in the graph connected by the
edge. Any graph can be represented as a matrix of size V xV , where each matrix
element (Vi, Vj) represents an edge between vertex Vi and Vj .

In practical settings, a large graph data set receives regular updates. Analysis
steps are re-run on the data as it changes. So, our workflow benchmark generates
a large random graph, sorts the edges, then updates the edges, then sorts the
updated edge set, and so on. This is not done in a single execution. Each step is
a separate program execution using a data set that persists between executions.
We implement the benchmark using the proposed OpenSHMEM extensions base-
lined against traditional POSIX I/O on a network mounted file system (NFS).
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– Application 1: generate graph G = (V,E) on Npe processes and sort edges
• Each PE randomly generates E/NPE edge tuples edge set E.
• All E are sorted onto PEs based on NxM matrix decomposition.
• Each PE writes its subset of E in binary format to a large shared graph

file at a fixed offset based on PE ID. Each PE also stored meta-data in
that file to indicate how many edges are in the subset.

– Application 2: Npe processes modify edge set
• Each PE reads meta-data from its location in the graph file to determine

how many edges are in the PE subset.
• Each PE randomly overwrites some number of existing edges in the file

with new randomly generated edges.
– Application 3: read graph and sort edges

• Each PE reads in edges from its portion of the shared graph file.
• All E are sorted onto PEs based on NxM matrix decomposition.
• Each PE writes its subset of E in binary format to a large shared graph

file at a fixed offset based on PE ID.

Applications 2 and 3 then repeat.

4.2 Benchmarking Requirements and Baseline for Data Persistence

The experiments model a scenario where a system has one or more dedicated
storage nodes serving as a data recovery point for power failures. As an appli-
cation runs, it writes data, then flushes the data to files to ensure that data
will persist through a power outage. The benchmark results do not do many
small individual writes to files, even though our API supports this. This behav-
ior would overly penalize a traditional filesystem baseline. Data is modified in
OpenSHMEM client main memory, then copied to remote persistent storage in
bulk transactions.

Using the OpenSHMEM I/O extension, the application copies data into
fspace files. Then it calls the shmem fp flush routine to move the data to a
persistent state, which blocks until the server has flushed all of the file data. In
our testbed, we have NVDIMM-N modules, so the flush operation blocks until
all data from volatile data has been backed to the onboard NVM. All of the
benchmark results include costs for flushing data.

To guarantee data persistence on NFS after a bulk write, the program must
ensure that the data is written all the way to physical block device on the NFS
server. The mechanisms to do this for NFS are not as straightforward. Linux
provides an fsync() function and an O SYNC option for opening files. According
to the documentation, either of these should be sufficient to commit all writes
to disk before returning from a write call. However, in practice, because these
mechanisms are defined for local disk, and do not have specific language for
network file operations, there is some ambiguity about how these semantics
apply to NFS. To ensure that NFS behaves exactly as expected, we use the
sync mount option for our NFS mount point, which forces all writes to complete
before returning from the write call. We leave NFS caching enabled.
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We mount NFS over the same IB fabric, using the same IPoIB connection
as the fspace server uses for command traffic. So, the comparison is made using
the same network.

4.3 Performance Evaluation

Results are presented here for running the graph generation and decomposition
workflow on a single node connected to a file server node.

Fig. 3. Runtime comparison for writing out graph tuple data

The first metric showing the usefulness of the fspace interface is the total time
taken to move the resulting decomposed tuple data over the network and ensure
that it is stored such that no data loss occurs during power disruption. Figure 3
shows the runtime on 2 to 28 PEs of only the write and flush of the graph tuple
data. Some applications in the workflow write the data after doing in-memory
edge generation, while other applications write the data after reading it. There
is little difference between these lines, though at the higher core count, the file
I/O to NFS suffers a small performance hit after a large read. An investigation
indicates that this is likely an effect of leaving NFS caches enabled, but the effect
was not consistent between runs, and so is considered noise in the network file
system interaction layers.

Comparing to file I/O, the OpenSHMEM put/flush interface does not suffer
much performance degradation as core count increases. The ideal weak scaling
slope is shown as a straight line (slope = 0) which would indicate that adding
new PEs to the computation will allow new work to be done without slowing
down the overall runtime. The OpenSHMEM fspace put/flush runtimes show a
1.6X slowdown between 2 and 28 cores versus an ideal 1x slowdown. It should
be noted that there is currently a performance penalty for the OpenSHMEM



OpenSHMEM I/O Extensions for Fine-Grained Access 331

Fig. 4. Runtime comparison for reading in graph tuple data

flush function that does not affect fsync. The OpenSHMEM flush function does
not currently track which parts of a file have been updated. Instead, the flush
operation must flush each cacheline in a separate operation. Since we use a
fixed size file for all runs, each call to flush will operate over the entire file. By
comparison, the file I/O synchronous write only operates on the actual data
being written.

As stated above, all writes and puts are bulk data transfers. So, in the case
of 28 PEs accessing the file on NFS, this runtime is largely the sum of 28 large
transfers of contiguous data that should be friendly to the I/O stack, and not
many thousands of small random accesses. Yet, the runtime scales roughly lin-
early with core count, with a slowdown of 12X between 2 and 28 cores, showing
little ability to overlap or optimize bulk writes to separate blocks in the file.

The runtime for the parallel read/get by all PEs of the tuple data is compared
in Fig. 4. The read/get runtime is compared to the runtime needed to randomly
generate edge data. On-chip edge data generation is typically considered to be a
much faster option than reading graph data from a file. For traditional file access,
any PE count over about 6 would be better served by randomly generating graph
data. However, when using the fspace interface, it is faster to get the data than
to generate it.

In terms of scaling, both of the read mechanisms scale roughly linearly with
number of PES. However, the get interface of the OpenSHMEM fspace method
has a much lower overhead, since it allows transferring data over RDMA. By
comparison, the runtime for file I/O includes all of the time needed to interact
with the kernel and file system layers on both the local and remote node.

The runtime of reads and writes is shown to be much faster for the Open-
SHMEM fspace interface. Figure 5 shows how this slowdown affects the entire
application. Other than the read and write phases, the applications spend the
most time in two other sections, the local sorting of tuples and the all to all com-
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Fig. 5. Scaling comparison to show slowdown of total application

munication to move tuples onto the correct PE. These sections have the same
runtime no matter the I/O method.

Figure 5 shows that the time spent in I/O dominates the total runtime when
reading and writing to files. The read app here is slower than the write app
because it both reads and writes the data.

5 Conclusions

The OpenSHMEM I/O API design exposes disaggregated persistent memory to
client application kernels using the OpenSHMEM processing element abstrac-
tion. Using this API, applications can access persistent memory storage over
RDMA networks on any number of PMEM devices. Our implementation is built
over the UCX high performance library, and so is highly portable and perfor-
mant across Linux based systems. To the best of our knowledge, this is the first
work demonstrating distributed storage implementation using SmartNIC hard-
ware in combination with NVDIMM-N persistent memory. We demonstrate the
usability of this method with a lightweight API and server implementation. We
demonstrate that this methodology provides data persistence guarantees at the
same or higher speed than NFS caches over the same network fabrics. Also, this
method does not suffer from performance degradation of traditional filesystem
access for increasing numbers of clients accessing a shared file.
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Abstract. The Distributed Asynchronous Object Storage (DAOS) is an open
source scale-out storage system designed from the ground up to support Storage
Class Memory (SCM) and NVMe storage in user space. DAOS uses an optimized
two-phase commit protocol to guarantee atomicity of distributed I/O. This pro-
tocol is tightly coupled with the self-healing system of DAOS, in contrast with
traditional two-phase commit protocol that is blocking when coordinator fails,
this protocol can proceed in presence of failure, and it also has shorter transaction
response time than the traditional protocol, these characteristics are important for
massively distributed and low latency storage system like DAOS. This paper intro-
duces the distributed transaction and self-healing system of DAOS, and presents
the performance benefits of the transaction protocol.

Keywords: DAOS · Distributed storage system · Distributed transaction ·
Two-phase commit · SCM · Self-healing · Data recovery · Rebuild

1 DAOS Introduction

Distributed Asynchronous Object Storage (DAOS) [1] is a complete I/O architecture that
aggregates Storage Class Memory(SCM) and Non-Volatile Memory Express (NVMe)
storage distributed across the fabric into globally accessible object address spaces,
providing consistency, availability, and resiliency guarantees without compromising
performance. It presents a key-value storage interface and provides features such as
transactional non-blocking I/O, a versioned data model, and global snapshots.

In order to unleash the full potential of newhardware technologies, the new stack pro-
vides byte-granular shared-nothing interface, it can support massively distributed stor-
age for which failure will be the norm while preserving low latency and high bandwidth
access over the fabric.
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1.1 DAOS System Architecture

DAOS takes advantage of next generation technologies like SCMandNVMe. It bypasses
all of the Linux kernel I/O, runs end-to-end in user space, and avoids system calls
during I/O.

As shown in Fig. 1, DAOS is built over three building blocks. The first one is per-
sistent memory and the Persistent Memory Development Toolkit (PMDK) [14]. DAOS
uses it to store all internal metadata, application or middleware key index, and latency
sensitive small I/O. DAOS uses a hybrid approach to optimize the trade-offs between
cost, performance, and capacity, this requires the second building block, NVMe SSDs
and the Storage Performance Development Kit (SPDK) [13] software, to support large
streaming I/O. The DAOS service can submit multiple I/O requests via SPDK queue
pairs in an asynchronous manner from user space, and create persistent memory indexes
for data in SSDs. Libfabric [12] and an underlying high performance fabric is the third
build block for DAOS. It is a library that defines the user space API of OFI, and exports
fabric communication services to application or storage services. The transport layer of
DAOS is built on top of Mercury [11] with a Libfabric/OFI plugin.

DAOS Storage Engine

SPDK
NVMe
Interface

Metadata, low-latency I/Os &
indexing/query

Bulk data

PMDK
Memory 
Interface

AI/Analytics/Simulation Workflow

DAOS library

POSIX I/ O HDF5 Spark…

Compute Nodes

MPI-I/ O Python

Libfabric

Storage Nodes

Optane DC Persistent 
Memory 3D-NAND/XPoint SSD

Fig. 1. DAOS architecture

1.2 Data Protection and Distributed I/O

In order to prevent data loss, DAOS provides both replication and erasure coding for
data protection and recovery. When data protection is enabled, DAOS objects are stored
across multiple storage nodes for resilience. If a failure happens on a storage device
or server, DAOS objects are still accessible in degraded mode, and data redundancy is
recoverable from replicas or parities.

DAOS distributed I/O for data protection is a primary-slave model: The primary
server forwards client requests to slave servers. This model is slightly different from a
traditional one. As shown in Fig. 2, the primary server forwards the RPC and RDMA
descriptor to slave servers.All serverswill then initiate anRDMArequest and get the data
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directly from the client buffer. DAOS chooses this model because the fabric bandwidth
between client and server is much higher than the bandwidth between servers in most
HPC environments.

Client

data
server

storage

data
server

storage

parity
server

storage

data
server

storage

data

client

slave
server
storage

slave
server
storage

primary
server
storage

data
RPC

RDMA

parity

(a) Replicated write (b) Erasure coding write

Fig. 2. DAOS distributed I/O

DAOS uses an optimized two-phase commit protocol, which is tightly coupled with
self-healing system, to ensure atomicity of the distributed I/O for data protection. The
main focus of this paper is introducing how this protocol overcomes the blocking problem
of two-phase commit, supports low transaction response time and reduces the number
of messages between servers as presumed commit protocol [5].

1.3 Algorithmic Object Placement and Redundancy Group

DAOS storage is exposed as objects that allow user access through a key-value or key-
arrayAPI. In order to avoid scaling problems and the overhead ofmaintaining per- object
layout metadata, a DAOS object is only identified by an ID that has a few encoded bits to
describe data distribution and the protection strategy (replication or erasure code, stripe
count, etc.). DAOS passes object ID and storage pool membership to a pseudo-random
based placement algorithm to compute object layout, this process is called algorithmic
object placement [4].

Layout of a distributed object can consist of N redundancy groups, each redundantly
storing a subset of object data. For replication, eachmember of a redundancy group stores
one replica of the same object shard, whereas for erasure coding, a redundancy group
is equivalent to a parity group. The distributed transaction described in this paper only
applies to I/O against one redundancy group, thus a redundancy group is the equivalent
of transaction group within context of this paper.

1.4 Self-healing System

In a distributed storage system, rectification of system faults is important because Mean
Time Between Failures(MTBF) of the system decreases when the system scales to more
storage nodes, if the storage system does not have a robust self-healing system, it is
difficult to guarantee its availability and scalability. The self-healing system should be
able to detect failure and handle data reconstructing without human intervention.
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The self-healing system of DAOS consists of two components: health monitoring
system and rebuild system. DAOS is using SWIM [2], a gossip-like protocol, as the core
protocol of its health monitoring system. When the health monitoring system detects
failure of a storage node, it reports the failure to the highly replicated RAFT [3] based
pool service, which can globally activate the second component, rebuild service, on all
storage servers. The rebuild service can independently discover objects impacted by
the fault by running placement algorithm against its local objects, and determine which
objects have replicas or parity on the failed server. These components are scheduled
for data reconstruction or replication to fallback servers in the background, even as
application I/O are still inflight. Details of the self-healing system will be introduced in
section-3 of this paper (Fig. 3).
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Fig. 3. Workflow of DAOS self-healing system

2 Distributed Transaction of DAOS

DAOS has both replication and erasure coding as built-in data protection strategies.
Writes to an object can be distributed to multiple object shards stored on different
storage nodes. Atomicity of distributed writes should be guaranteed, otherwise reads
from different servers can be inconsistent and data is unrecoverable on failure. The main
focus of this paper is presenting an optimized two-phase commit that can guarantee
atomicity of distributed I/O while decreasing the response time of traditional protocol.

2.1 Two-Phase Commit

The two-phase commit(2PC) protocol [8] is a type of atomic commitment proto-
col(ACP). It is a distributed algorithm that coordinates all the members that participate
in a distributed atomic transaction on whether to commit or abort the transaction. A
two-phase commit transaction always needs a coordinator to drive transaction status
transition among members. The coordinator can either be a dedicated process, or one of
the transaction members. Within the context of this paper, transaction coordinator is also
a member, it is algorithmically chosen from transaction members by running a pseudo
random based function with object ID or key as random seed.
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In execution of a distributed transaction, the two-phase commit protocol consists of
two phases [16]:

• Prepare phase: a coordinator requests all participants to prepare for the transaction and
reply vote-commit or vote-abort. If all participants voted “commit” then the transaction
is “committable”.

• Commit phase: based on voting of the participants, the coordinator decides whether
to commit (only if all members have voted “commit”) or abort the transaction, and
notifies the result to all the participants.

There are a few variants of two-phase commit [9], including presumed abort(PrA),
presumed commit(PrC) [5], easy commit [6], and three-phase commit [7] etc. Some of
them can overcome the blocking issue of two-phase commit, others can reduce message
transmission and response time of transaction, but none of them can achieve both goals.

In the case of DAOS, because distributed I/O is always tied up with data protection,
so DAOS can leverage its self-healing system to support asynchronous commit and
resolving the blocking issue of traditional two-phase commit. In other words, the two-
phase commit introduced in this paper is a variant that is coupled with data recovery
system, it is not a standalone protocol.

2.2 Asynchronous Two-Phase Commit and Batch Commit

In a basic two-phase commit protocol, the coordinator should either commit or abort the
transaction before replying to client (Fig. 4.a), the response time of transaction includes
two network round-trips between servers. With asynchronous commit, the coordinator
can reply to the client when all members replied vote-commit for the operation (Fig. 4.b),
which is called “prepared”, and afterwards commit the transaction asynchronously. If any
participant cannot prepare the operation, DAOS aborts the transaction synchronously.
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Asynchronous two-phase commit has similar response time as PrC two-phase
commit protocol, but it is different with PrC in essence:

• In PrC two-phase commit protocol, coordinator should log every transaction that has
started to prepare, because missing transactions are presumed to have committed. In
asynchronous commit protocol of DAOS, coordinator does not log the transaction
before dispatching the vote request, instead it logs the write after dispatching vote
request, and other participants log the write after receiving the vote request. It means
asynchronous commit protocol can save one log write and reduce the latency of
transaction.

• In the asynchronous two-phase commit protocol, the logged writes on participants
and coordinator are the same, they are also deemed as transaction log records. A
transaction will be aborted if it is not logged by either coordinator or participant,
details will be introduced in Sect. 2.5.

In the asynchronous commit protocol, transaction coordinator can reply to client
before sending out the commit request. It means if clients submit many transactions
against the same transaction group, the coordinator can commit them in a batch. In this
approach, DAOS can significantly reduce communications between servers while also
reducing persistent memory transactions by batching status changes into a single trans-
action. Figure 5 is an example of batched commit. In order to support asynchronously
batched commit, the coordinator should cache transactions IDs that are ready to commit,
or are committable, and commit them periodically or when the number of outstanding
committable transactions exceeds a threshold.

request

Client              Coordinator Participant ParticipantClient              

request

reply

reply

prepare

Commit
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T3, T4)

T1
T2
T3
T4

Fig. 5. Batched commit of asynchronous two-phase commit

To make this protocol practical, two issues should be addressed: 1) How a non-
coordinator handles read if transaction status of data is “prepared” and 2) How to com-
plete the transaction status transition if amember fault happened before the asynchronous
commit. Solutions for these issues will be introduced in following sub-sections.
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2.3 Read Protocol

Asynchronous two-phase commit of DAOS can significantly reduce latency of com-
pleting a transaction. However, it also increases complexity of the read protocol. With
asynchronous commit, the writer sees write completion immediately after all members
are prepared. If a reader waits long enough for the transaction to be committed asyn-
chronously, the request can be handled normally. However, if a reader attempts to read
while the asynchronous commit is in flight, the status of the transaction could be either
“prepared” or “committed”. In this case, it is not safe for the non-coordinator to handle
the read because different servers could provide inconsistent data. So a non-coordinator
should only return a special error code to the client which, instead of reporting the error
to application, re-resubmits the I/O request to the coordinator that has the authoritative
state of the transaction cached, either “committable” or “abort” if any members could
not complete the local transaction. The coordinator can either return the correct data
back to the client, or prioritize commit or abort of the transaction so other members can
service reads.

2.4 Transaction Conflict

DAOS I/O can support three types of write operations: insert, update, and upsert (update
or insert). Upsert of DAOS can be applied unconditionally, however, insert and update
should be executed with condition check, for example, trying to insert an already existent
key should fail. In order to reduce response time of RPCs, distributed I/O of DAOS does
not serialize execution on primary and slaves nodes, so if two conflicting conditional
operations arrived at twonodes in different order, they can end upwith different execution
results. In this case, both transactions should abort and restart after a random time interval
until one successfully executes on all members. This paper will not include content about
resolving transaction conflicts because it is a irrelevant topic, instead, the next section
will introduce how a DAOS transaction proceeds if failure and conflict happen at the
same time.

2.5 Non-blocking Two-Phase Commit and Transaction Resync

One of themain issues of two-phase commit protocol is that a transactionwill be blocked
on coordinator failure, significantly impacting availability, usability and scalability of
large storage system. DAOS relies on its self-healing system, which can detect failure in
bounded time and reconstruct transaction data in the background, to avoid the blocking
characteristics of two-phase commit.

When a DAOS server failure happened, it can be detected by the health monitoring
system (Sect. 3.1), which runs SWIM protocol, in a deterministic bound. If the coordi-
nator was alive and received the failure event, it should return “retry” error code to the
client, which can choose a fallback server to replace the failed one and re-submit the I/O
transaction.

However, if the transaction coordinator failed and the storage system wants to avoid
transaction blocking, then surviving members of the transaction group have to run an
extra protocol to progress status of the uncommitted transaction. But if the race described
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in previous section and coordinator failure happen at the same time (Sect. 2.4), this
process is difficult to proceed because there is no bounded time for the coordinator
coming back. In the example in Fig. 6, C0/P0, which is both transaction coordinator and
participant,made adifferent decision thanothermembers onT1becauseT1conflictswith
T0, but crashed before sending the “abort” to other members. In this case, the transaction
cannot be synchronously aborted because the coordinator is gone, and nobody can even
know this transaction should be aborted. In a traditional two-phase commit protocol,
transaction cannot proceed before the coordinator comes back. However, bringing a
server back could take unbounded time, particularly if it requires administrator, so the
transaction is blocked by the failure.

Client              C0/P0 P2 P3Client              P1

conflicted(T0)
prepared prepared prepared

crash

T0

T1

Abort   (not sent)

delayed

Fig. 6. Conflicting operation and transaction member failure

This is a well-known issue, DAOS resolves it by running two independent protocols:
1) resync protocol, surviving members of the transaction group should run this protocol
to get agreement on status of inflight transactions, then commit or abort them; 2) rebuild
protocol of self-healing system, it reconstructs data on a fallback node for all committed
transactions. The rebuild protocol will be introduced in later sections, this section only
focuses on resync protocol:

• If at least one of the surviving members decides to abort or has no logged vote, then
the transaction group can proceed and abort the transaction, because vote of the failed
one has no impact on the final decision of the transaction group.

• If the failed participant voted “abort” and it has already shared the vote with at least
one of the group members, then the transaction group can also proceed and abort the
transaction.

• However, if all the surviving members did vote-commit in the prepare phase, and the
failed participant is the only one with “abort” vote and it crashed before sharing, the
surviving members can also reach agreement and commit the transaction. It seems
odd but is safe with the support of the self-healing system. Based on assumption of
synchronous abort, it means neither surviving members nor client knows about the
“abort” vote from the failed participant, so the self-healing system can reconstruct
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data and overwrite the “abort” decision. This makes sense if the abort decision was
made for an I/O error but it could also indicate a race. In the latter case, the fact that the
failed participant decided to abort a transaction (C0/P0 decided to abort T1 in Fig. 6)
implies others may have already decided or will decide to abort the other transaction
(T0 in Fig. 6) because they already voted “prepared” for T1. So the transaction group
can reach agreement and allow T1 to commit and the unseen “abort” decision will be
overridden by self-healing system.

In summary, the resync protocol collects transaction votes from surviving members
and makes decision without waiting for the failed member, it is not a standalone protocol
because it relies on self-healing system to reconstruct committed data and even override
the diverged decision. Neither transaction members nor clients will see inconsistent
result with this protocol, because resync can only override abort decision if it is not
known by others.

2.6 Transaction Coordinator Selection and Transaction Resync

As described in Sect. 1.3, DAOS uses pseudo-random based algorithm to generate the
layout of objects. It also uses pseudo-random hash to select transaction coordinator.
When a client starts an I/O against a transaction group, it can hash the object ID and map
it to one of the members as the coordinator. A transactional write request has to be sent
to coordinator, while read requests can be sent to any member of the transaction group,
as discussed in Sect. 2.3. DAOS server uses the same pseudo-random hash to choose
transaction leader, it means that for the same I/O transaction, client and servers always
choose the same node as transaction coordinator.

If the transaction coordinator fails, a new coordinator must be selected by hashing
object ID against and mapping to one of the surviving members. The new coordinator
should immediately gather all outstanding transactions from other members, and try to
commit or abort them (resync protocol), instead of caching their status in volatilememory
again. This is because user data is more vulnerable after failure, those committable data
should be committed so the self-healing system can reconstruct and restore the data
redundancy.

The new coordinator has to be chosen from surviving members and it cannot be the
fallback node in reconstructing, because only surviving members have logs for uncom-
mitted transactions. The new coordinator can iterate log entries and request other mem-
bers to move the transaction to the second phase, either commit or abort. It should be
noted that some transactions might not be logged by the new coordinator, in this case
they cannot be committed or aborted. It also means the original coordinator did not
reply to the client, because (old) coordinator can reply only if all members confirmed
“prepared” and stored the transaction in log whereas the new coordinator does not have
the transaction log. So the client will eventually get a timeout from the request, and
resend the request to the new coordinator and complete the transaction. If the client is
also gone, then these orphan transactions will be eventually reclaimed by a background
service of DAOS.
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3 Self-healing System of DAOS

The self-healing system of DAOS is not just for recovering data on failure, but can also
eliminate the blocking constraint of regular two-phase commit protocol. It can help the
failed server to catch up transaction status when it returns, or reconstruct committed
transactions on a fallback server if the original one cannot be restored. The self-healing
system consists of two components: health monitoring system and rebuild protocol. This
section will introduce both of them.

3.1 Health Monitoring System

DAOS uses SWIM as the health monitoring protocol. SWIM is a gossip-like protocol
where node running it randomly pings a peer in the cluster and tries to share the known
failures with the peer. If a node cannot reach a peer, then this node will put the peer on
suspected list. After a certain timeout, if it still did not get any status update about the
suspected peer, it should mark it as dead and propagate this information to other peers
by random pings.

SWIM implementation of DAOS allows a server to register a notification callback,
whenever a node is deemed as dead by SWIM, DAOS pool service will be notified by
the callback, it can evict the dead node from the membership table, and propagate the
new membership table to all nodes in the cluster. Each node receives the membership
update should run “rebuild protocol” to reconstruct data for the failed node.

SWIM protocol can detect a failure in bounded time, a DAOS server running SWIM
should abort message against faulty node after detecting the failure, and proceed trans-
action by switching to a fallback server or running resync protocol in the background,
instead of blocking.

3.2 Rebuild Protocol

Rebuild protocol is the core algorithm of the DAOS self-healing system. The rebuild
service of a storage node starts to run this protocol after receiving themembership update
indicating a node is “down”.

This protocol includes “scan” and “pull” phases. In the scan phase, a storage server
scans object IDs stored in local persistent memory, independently calculates the layout
of each object, and then finds out all the impacted objects by checking if the failed node is
within layouts. In this phase, the rebuild service also sends IDs of these impacted object
to algorithmically selected fallback servers. The fallback servers then enter the “pull”
phase to reconstruct data. In this phase, fallback servers reconstruct data for impacted
objects by pulling data from nodes that have redundant data of these objects, and writing
the reconstructed data to the local object store.

When a storage node completes any of these two phases, it should report status to
the pool service. When the pool service receives both scan and pull completions from
all nodes, it can announce rebuild is globally completed by propagating the membership
table again, this time the failed node is marked as “out”.

As shown in Fig. 7, there is no global barrier between the scan phase and pull phase,
these phases can overlap on different nodes. For example, node3 has already started to
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Fig. 7. Rebuild protocol of DAOS

pull data while node1 is still scanning. It means that a storage node may report false
completion because it could get more object IDs after it reported “pull” completion, if
a remote peer is still in scan phase and it can send object IDs to this node time to time.
Therefore, the phase transition of rebuild protocol can be described like:

• A storage node should report “scan” completion once it scanned its local objects and
sent out all impacted object IDs.

• A storage node should report “pull” completion each time it completed data recon-
struction for all currently received objects, it means a node can report “pull” com-
pletion more than once, because after reporting, it may still receive object IDs from
remote peers.

• The pool service can only trust the “pull” completions after it received all “scan”
completions, because no one will provide objects for rebuild once all nodes have
completed scan, then no one will report false “pull” completion anymore.

The essential of DAOS object placement algorithm is a pseudo random based hash
that can distribute objects to everywhere in the storage system, so a storage node can
belong to thousands or more redundancy groups. During the rebuilding process, objects
impacted by the failure are distributed to nearly all the nodes, so there is no central place
to perform data or metadata scans or data reconstruction. In addition, storage model
of DAOS is multi-tenancy and user can create many storage pools on the same set of
storage nodes, so this gives another level of rebuild declustering because objects within
different pools have different layouts. In other words, the I/O workload of the rebuild
service will be fully declustered and parallelized.
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3.3 Cascading Failure Rebuild

Rebuild protocol of DAOS is also based on a two-phase commit protocol. Most of the
work is done in the “prepare” phase that includes both “scan” and “pull”. The commit
phase only propagates the membership table to complete rebuild. Again, the major issue
of two-phase commit is that it is a blocking protocol. DAOS is using rebuild system
to eliminate the blocking of two-phase commit I/O. Since the rebuild system itself is
also based on two-phase commit protocol, how can DAOS handles cascading failure
without blocking the current rebuild protocol? An obvious approach is restarting the
rebuild process for cascading failure where all members scan object store again to detect
objects impacted by the new failure. However, in a large system with thousands of
storage nodes, restarting could happen frequently because MTBF is relatively short and
possibility of cascading failure is high. Tracking and resuming rebuild progress becomes
a big challenge in this case in order to make progress and move to a clean status.

DAOS is using a very simple approach to avoid the blocking and restarting rebuild
protocol: it simply queues the new failure, ignores all the impacts of new failure and
continues the rebuild for the original failure, only handling the new one after completing
the original. To explain this, two roles are defined for a storage node while running
rebuild protocol:

• Contributor: a contributor should detect all local objects being impacted by the failure
and is the data source for data recovery.

• Puller: a puller is the fallback node that is responsible for reconstructing data, it
receives object IDs fromcontributors, and reconstructs data for these objects by pulling
data from contributors and writing to local storage.

Although a node can be both puller and contributor (node3 of Fig. 7), they are
separated in this section to simply the description. When a cascading failure happens
during rebuild:

• If the newly failed node is a contributor and its data is still available on other nodes,
then rebuild can proceed because other nodes can provide everything being provided
by the new faulty node, the rebuild service can just switch to degraded mode and
pull data from other places. On the other hand, if no other node can provide the same
information as the new faulty node, it means that data is unrecoverable after cascading
failure. In such cases, the rebuild protocol should also proceed because there is nothing
it can do.

• If the new faulty node is a puller, then the data being reconstructed on that node is
gone again but will be reconstructed by the queued rebuild task for cascading failure,
so there is no necessity to start over.

Based the description above, rebuild protocol of DAOS allows the data rebuild pro-
cess to proceed even there is a cascading failure, so the system would neither block nor
restart the rebuild process. These characteristics ensure the protocol is scalable in a large
scale storage system.
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4 Asynchronous 2-Phase Commit Performance Results

This section shows the performance differences by running IOR with and without asyn-
chronous commit. Since one of the major goals of this protocol is reducing latency and
increasing throughput of small I/O size transaction, the benchmark used 256 bytes as
the transfer size to avoid the noise of bulk transfer. The results also include data points
from unsafe, non-transactional or one-phase writes, which have no commit, thus the I/O
is deemed as complete as long as all members are prepared.

The benchmarks have been run on Intel’s DAOSprototype cluster “boro”. Both client
and storage nodes use Intel Xeon E5-2699 v3 processor and they are equipped with Intel
Omni-Path 100 adapters. There is no persistent memory or NVMe SSD on these nodes,
so data was written to tmpfs though libpmemobj of PMDK [10], which still calls flush
and drain instructions even its backend is tmpfs based emulation. This does not impact
the conclusion because the goal of this benchmark is showing benefits of protocol with
reduction of network transmissions and cache flushes. The object in the benchmark was
3-way replicated, so the transaction group has three severs. There was a single client in
the benchmark, it ran one rank for the latency test, and 16 ranks for the throughput test.

There are three bars in each part of the diagram:

• The first bar is two-phase commit that does synchronous commit, it shows the
performance of the basic two-phase commit protocol.

• The second bar is one-phase distributed I/O, it skips the commit phase to represent
the baseline performance of the benchmark when there is no overhead of transaction
protocol.

• The third bar represents the performance result of asynchronously batch commit pro-
tocol, comparing it with the first bar can show the performance gain from running this
protocol.

Figure 8.a shows I/O latency of asynchronous two-phase commit reduced 35%while
comparing with regular two-phase commit, and Fig. 8.b shows small I/O throughput of
asynchronous two-phase commit increased 40%.
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5 Conclusion

Two-phase commit protocol of DAOS is tightly coupled with its self-healing system and
can avoid the unbounded blocking phenomena of a traditional implementation of two-
phase commit protocol, thus increasing the availability of system. In addition, because
it allows a committable transaction to move to the commit phase even in the case of
multiple failures that includes both the coordinator and participant, so it can support
asynchronous commit and decrease transaction response time significantly. It can also
support batch commit for transactions belonging to the same transaction group, reduc-
ing the message transmissions between servers and the number of persistent memory
transactions, thereby improving the overall throughput of the storage cluster.

6 Future Work

The transaction protocol introduced in this paper is only for atomicity of a replicated or
erasure coding I/O against one redundancy group, it can also be extended to transactions
that modifies multiple redundancy groups of arbitrary number of objects. This extension
cannot simply determine transaction order by arriving order anymore but has to rely on
MVCC and a global logical clock to define transaction order and control the consistency
of data accessed by multiple concurrent transactions. The enhanced protocol is not
described in this paper due to limited space available.
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Abstract. Future high-performance computing (HPC) platforms
increasingly depend on heterogeneous node architectures to meet power
and performance requirements. While modern HPC design largely incor-
porates GPUs with CPU resources, there is potential to further inte-
grate novel forms of computing. The ability to leverage efficient, non-
conventional computing technologies would be a fundamentally disrup-
tive development in advancing HPC. Neuromorphic computing is such an
emerging technology, which would interest the HPC community, due to
its potential for implementing large-scale calculations with an extremely
low power footprint. We will explore the example of mapping the con-
nectome of the brain to illustrate advantages of using a heterogeneous
system that incorporates neuromorphic hardware.

Keywords: Neuromorphic computing · Heterogeneous HPC

1 Overview

Recently there has been a trend toward incorporating multiple classes of pro-
cessors on a single HPC board. Embracing this heterogeneity has been invalu-
able in moving towards exascale computing, with significant reliance on gen-
eral purpose graphics processing units (GPGPUs) to more efficiently implement
large-scale problems that rely on dense linear algebra. More attention has been
given to linear algebra accelerators, such as systolic arrays (i.e., Google’s Ten-
sor Processing Unit) to achieve further efficiencies for suitable computations.
Unsurprisingly, this shift in HPC configuration has also expanded the scope of
applications for which HPC is relevant to include many current computationally-
expensive artificial intelligence (AI) tasks such as deep artificial neural networks
(ANNs). However this broadening of HPC components has been limited to con-
ventional processor approaches. Here we present a vision for what we refer to
as truly heterogeneous HPC, whereby HPC systems include both conventional
components (e.g., CPUs, GPUs, systolic arrays) and non-conventional compo-
nents, such as neuromorphic hardware and processing-in-memory (PIM) devices.
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These emerging technologies promise substantial benefits in efficiency as shown
in Fig. 1, especially in terms of power requirements, but also require a distinct
approach to computation. These architectures are extremely parallel, with dif-
ferent trade-offs between precision and speed than are typically encountered in
von Neumann systems. The use-cases for neuromorphic hardware are actively
evolving. For instance, while the long-term impact of neuromorphic comput-
ing likely lies in future brain-derived algorithms [2]; much of the recent focus
has been on accelerating ANNs [54,56] and it is increasingly recognized to be
capable for numerical computing applications [3,55]. It is not immediately obvi-
ous whether neuromorphic approaches are critical for scientific applications that
have driven HPC development to date. Computing technologies have evolved
to solve large physics models. Similarly, large-scale machine learning approaches
such as ANNs, bolstered by GPUs, have outperformed alternatives. However, the
scientific computing ecosystem is beginning to change. As data collection begins
to outpace theory in fields such as neuroscience, medicine, and climatology, we
increasingly find ourselves in a world where the simulation of physics models is
less important than deriving insight from extremely large volumes of complex
data. To illustrate this shift and how it would drive the eventual requirements
of a truly heterogeneous HPC platform, we work through a specific scientific
example: mapping and interpreting the connectome of the brain as illustrated
in Fig. 2. The connectome example is both salient (the US Government and EU
continue to spend significant funds on it) and representative of an emerging class
of data-intensive scientific endeavors where classical modeling and analytics are
only part of the solution. Within this example, we highlight how incorporating
the scientific exploration of data changes computing needs, and show that a
system combining the strengths of traditional CPUs/GPUs with emerging neu-
romorphic technology will be invaluable and disruptive for HPC systems.

Fig. 1. The computational efficiency of modern general-purpose processors has hit a
power wall [18,24], leading to the search for novel architectures and emerging devices.
The metric used for performance is Multiply Accumulates per Watt (GMAC/Watt).
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Connectomics and Electron Microscopy data

Mapping the connectome of a brain and deriving new understanding of the
underlying neural circuit function as shown in Fig. 2 requires addressing a num-
ber of key challenges. Scaling electron microscopy (EM) techniques to handle a
volume the size of an entire brain [31,42] comes with the challenge of analyzing
the massive amounts of associated data. The first reconstruction of the C. ele-
gans nervous system [60] was performed almost entirely by human-hand, requir-
ing more than 10 years to map approximately 300 neurons and 7000 connections
between them [29]. For comparison, a Drosophila melanogaster (fruit fly) brain
comprises on the order of 100,000 neurons [65] while a mouse brain is estimated
at 70 million neurons [26]. The raw data for one cubic millimeter of mouse visual
cortex is on the order of 2 petabytes [64]. While advances in high-throughput
EM [63,64] and automated segmentation and reconstruction algorithms [30] sig-
nify the ‘coming of age’ of EM, interpreting newly-available, high-resolution
whole-brain connectomes will require overcoming significant computational chal-
lenges. As larger volumes from both invertebrate [20,51,62,65] and mammalian
[19,53,64] brains become available with increasingly dense reconstructions and
more complete identification of different cell types and synaptic connections, so
will the need for semi-automated and increasingly sophisticated analysis.

In this paper, we focus on how a heterogeneous platform may be leveraged
to address the computational challenges associated with processing and analysis
of the EM imagery, including segmentation and analysis of the resulting connec-
tome graph. First, emerging technology may be used to accelerate current state-
of-the-art methods for EM imagery analysis. The use of flood-filling networks
for image segmentation and reconstruction [30] of large-volume EM constitutes
state-of-the-art today (e.g. see [34,51,62]). While these networks perform with
significantly better accuracy compared to alternative approaches, they are also
computationally expensive. Some of our existing approaches to developing neuro-
morphic systems may be leveraged to implement these networks at significantly
lower computational cost.

Another challenge for fully realizing the potential of high-throughput EM is
analyzing the connectome to draw meaningful conclusions regarding the orga-
nization and function of neural circuits. Larger-scale connectomes with online
tools for visualization and analysis have only recently become widely available

Fig. 2. Pipeline needed to map the Brain Connectome from 3D EM Structural Data
to extracting neural circuit motifs and analyzing it. EM Image reproduced from [65]



352 S. G. Cardwell et al.

(for examples, see https://microns-explorer.org [19,53] and https://neuprint.
janelia.org [15]). Analysis of the associated neural graphs thus far have been
largely limited to statistics describing the input/output connectivity of specific
cell types [50,53,65] within individual volumes. Analysis of graphs combined
with functional data [10,67], or across multiple specimens [61] are less com-
mon and will likely require more sophisticated semi-automated approaches. Our
approaches to accelerating AI algorithms on neuromorphic hardware can be
extended to accelerate the process of identifying meaningful graph motifs con-
tained within these images, thereby facilitating meaningful interpretations of the
data.

2 Algorithmic Approach

Many scientific domains, ranging from astrophysics to materials science, lever-
age large scale data collection and a series of AI analyses to extract scientifically
meaningful data. Image processing, or very similar data processing, is often the
first step of such scientific analysis pipelines, and many of the successful AI
techniques being developed today impact this stage. The convolutional neural
network component of this AI pipeline is a well-established algorithm that has
broad applicability, and the process of identifying the computationally expensive
parts of these neural networks and tailoring them for hardware acceleration is an
immediately approachable research challenge. The algorithmic approach will be
primarily to identify critical computational kernels that are suitable for neuro-
morphic hardware implementation and that can be extracted from an overall AI
pipeline. Below we describe approaches that can leverage neuromorphic architec-
tures and enable the acceleration of EM image analysis with lower computational
cost.

2.1 Deep Graph Decomposition

Deep learning methods, as applied to analyze graph structure, is still a developing
field, for example the work on graph neural networks (GNN) in recent years (see
[66] for a review). In contrast to more commonly studied social or information
graphs, however, the data extracted from EM image analysis admits a higher
degree of complexity in its structure (e.g. cortical microcircuits, high fan-in/out,
etc.). To remain informative and useful to the researcher, subgraph analysis
techniques in this area will be important to specify salient neural circuit motifs,
as well as measure their occurrence.

While the decomposition of graphs into subgraphs is typically the purview of
conventional graph analytics, the scale of connectomes and the requirement for
tailoring answers towards an end-user’s needs makes it a data-driven machine
learning problem, further leveraging the advancements in deep learning. Because
the goal will be to decompose the graph structure from EM data into functionally
relevant subgraphs, we refer to the approach as Deep Graph Decomposition,
or DGD.

https://microns-explorer.org
https://neuprint.janelia.org
https://neuprint.janelia.org
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Supporting this approach are recent developments in graph embedding, such
as graph2vec, structural-rnn, or LINE, which enable effective vector represen-
tations that may be useful in identifying critical, repeating features in graphs
[28,38,58]. This is analogous to the role of convolution filters used for image pro-
cessing problems or acquiring dictionary elements for sparse coding. The learned
filters in either of these domains are effectively data-driven feature extractors.
More specific to image processing, these filters may combine and stack into a lay-
ered hierarchy. For our subgraph task, we are specifically interested in patterns
that carry critical information about the composition (i.e. rate of occurrence)
in the larger graph, and we hypothesize that these can be determined either
directly (via inference) or indirectly (via network introspection).

Embedding methods such as DeepWalk, which use random walks from graph
vertices to generate representational signatures, may better leverage heteroge-
neous architectures [43]. Previous work [55] shows that neuromorphic systems
can be highly efficient at computing diffusive random walks on graphs. By cat-
egorizing and counting the types of walks that are observed, we can extract an
approximation of the common connectivity patterns within a given graph. In con-
trast with more conventional, state-of-the-art algorithms for subgraph counting
(e.g. ESCAPE [44]), the motivating trade-off is to be able to extend beyond the
limited subgraph sizes (e.g. up to five vertices) of exact methods. This leads to
the scalability and subgraph complexity needed to analyze EM data, where there
will be expected variability within equivalence-classes of neural circuit motifs.
Neuromorphic systems are uniquely suited as a computational platform to map
and scale graphs because of parallelism, local connections, and efficiency gains.

2.2 Neuromorphic Scaling of 3D Convolutional Neural Networks

Deep learning methods, particularly convolutional neural networks used in EM
segmentation, are becoming increasingly common within scientific experimental
workflows. Researchers in several fields have been able to use deep learning to
help shift effort away from time-intensive tasks (e.g. hand-labeling images) or
to help mitigate technical bottlenecks (e.g. when storing large-scale raw data is
prohibitive). Large-scale applications, such as the use of flood-filling networks
to segment neural EM data, require a considerable amount of compute power,
often utilizing a heterogeneous CPU/GPU system. This compute requirement is
complicated by the inclusion of 3D convolutional layers – a standard 2D convo-
lution strides a 2D window (filter) across the x and y dimensions of an image,
whereas a 3D convolution strides a 3D cube across the x, y, and z dimensions
of a 3D image or a stack of 2D images. These 3D convolutions are well-suited
for stacked frames (such as those found in EM data or video) or other 3D imag-
ing (such as MRI images). Despite possible acceleration via Fourier methods,
these algorithms require more compute and more memory than the common 2D
counterpart.

The most straightforward approach to making neural networks more efficient
is to tailor algorithms to require less precision, in both weights and activation
functions, along with hardware capable of benefiting from this low-precision.
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High-performing neural networks traditionally use 32-bits or more precision for
activation functions (e.g. rectified linear units) and weights. However, the high
precision afforded by these representations is costly both in computation and
communication. To address the challenge of big data science applications such
as EM, the scale of today’s neuromorphic systems is vastly insufficient. For
instance, the first layer of the flood-filling network would likely require over one
billion neurons, well beyond the largest neuromorphic platforms available today.
It requires further design trade-offs, such as fixed precision weights or limited
connectivity. We envision that future large-scale systems as described in Sect. 3
will rise up to these challenges.

3 Hardware Architecture

As digital systems saturate in terms of power efficiency, it is clear that the future
of computing is heterogeneous. Moore’s law is slowing, and recently neural net-
works have regained popularity. This has led to renewed focus on emerging tech-
nologies, such as neuromorphic computing. Inspired by the brain, neuromorphic
architectures leverage properties such as massive parallelism, sparse activity, and
event-driven computing. Prof. Carver Mead pioneered neuromorphic engineering
in the late1980 s using silicon devices to mimic biology. These were analog circuits
that utilized sub-threshold dynamics of CMOS transistors to emulate biological
systems. Today, neuromorphic systems encompass digital as well as mixed-signal
approaches. Recently, several large-scale neuromorphic projects have paved the
way to demonstrating problems at scale on these systems. Spiking neuromorphic
hardware fabricated in cutting-edge technology nodes is rapidly progressing to
a billion neurons from vendors such as Intel (Pohoiki Springs/Loihi). Recent
developments in non-conventional devices like nanoscale memristors that are
CMOS-compatible show promising solutions to modeling dense synaptic mem-
ory.

3.1 Analog Neuromorphic Computing

Researchers at Sandia have shown that analog in-memory computations have
a fundamental scaling advantage over digital memories. Analog crossbars have
been projected to reduce energy and latency by three orders of magnitude com-
pared to an optimized digital Application Specific Integrated Circuit (ASIC)
[1]. Different classes of devices show promise, including TaOx Resitive RAM
(ReRAM) and conventional floating-gate SONOS. The analog ReRAM shows
the most promise when compared to digital SRAM-based ASICs, with better
performance in area, energy, and latency [1]. However, the algorithms used to
train and learn on these devices are not optimized for their behavior. In-memory
analog kernels are subject to analog noise. This variability can be leveraged by
incorporating hardware characteristics as features while training [9,46]. Fur-
thermore, these systems tend to have lower bit precision. Co-designing multi-
precision algorithms for these devices and integration with conventional CMOS
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approaches will be crucial to unleashing their potential. Other approaches in
analog and mixed-signal CMOS chips include large-scale mixed-signal ICs like
DYNAP-SEL [37], Neurogrid [8], and analog CMOS floating-gate based recon-
figurable approaches like GT’s learning enabled neuron IC [11] and Field Pro-
grammable Analog Arrays [23]. For a detailed overview see [59].

3.2 Digital Neuromorphic Computing

Developments in large-scale digital neuromorphic chips have shown the promise
of these systems at scale. Table 1 highlights the digital neuromorphic front-
runners. University of Manchester’s SpiNNaker chip (130 nm CMOS) represents
a more configurable approach, with programmable ARM cores and an intercon-
nect fabric optimized for spiking communication [22]. This platform is flexible to
different neuron and synapse models. IBM’s TrueNorth chip was the first neu-
romorphic chip with a million neurons [35]. Intel’s Loihi is fabricated in 14 nm
FinFET technology with 128 neuromorphic cores and with an integrated learning
engine on-chip [16].

The SpiNNaker and Loihi architectures lend themselves well to scaling and
are front runners in the race to achieving billion neurons. The million ARM
core SpiNNaker system aims to simulate a billion neurons and Intel recently
announced the Poihiki Springs system with 100 million neurons [39]. Plans on
building the next generation of SpiNNaker2 chips in 22 nm FDX CMOS are cur-
rently underway [27]. Both systems support learning on-chip, are configurable,
and have a dedicated software stack to program the hardware. These systems
also support research communities, which is key to the adoption of such emerging
technologies.

Table 1. Current large-scale digital neuromorphic systems. Energy per event as
reported from [59]

Platform Technology Neurons Synapses On-chip Energy per

(chip) (chip) learning event

Loihi 14 nm 128K 128 M Yes 23.6 pJ

TrueNorth 28 nm 1M 256 M No 45 pJ

SpiNNaker 130 nm 16K 16 M Yes 43 nJ

3.3 Integrating Neuromorphic Computing with Conventional HPC:
Optimizing System Architecture

The fundamental principle guiding architecture design is to match the structure
of the physical machine to the algorithm. This leads us to focus on two secondary
principles: heterogeneity and information distance.
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Heterogeneity – No single machine structure will best fit every algorithm, even
within the specific domain of neural-inspired algorithms. The mix of available
core types still represents a commitment to a particular range of algorithms.
Alternately, different installations could choose different combinations of ‘plug-
and-play’ hardware modules to target specific sets of algorithms.
Information Distance – Data movement is the key limit in modern systems.
Individual transistors are already extremely efficient, requiring on the order of
1e− neurons and digital communication 17 J of energy to switch, not far above
the thermal noise limit of ∼40kbT = 2e−19 J. However, communication is orders
of magnitude costlier, requiring around 1 pJ to move data across a chip. The cost
of computation is dominated by Joules/(bit*meter). That is, energy cost scales
with the distance information must move. Consequently, the focus would be to
use neuromorphic accelerator kernels that process in memory and minimize data
movement. A full system design will consist of the following levels:

• Core: A single processing block. This may be either analog or digital.
• Package: A collection of cores assembled on a single die, or perhaps a

vertically-integrated stack of dies. The package may be heterogeneous, con-
taining several different types of cores, and perhaps mixing digital with ana-
log cores. A key question is how heterogeneous cores communicate with each
other. We make the simplifying assumption that cores always connect to a
digital network and follow a standard protocol. This protocol will be designed
to scale up to system and cluster levels.

• System: Neuromorphic packages may be integrated with conventional com-
ponents (GPUs, CPUs, memory banks) on a compute node. Each package
could have dual-ported memory, such that it can be accessed on the main
system bus, or it may be accessed solely through the neuromorphic network
protocol, in which case a bridge device will be visible to the rest of the system.

• Cluster: Specifies how to scale-up systems which include neuromorphic com-
ponents to work efficiently at the petascale or exascale (machines that occupy
an entire warehouses or data-centers). Interesting questions include whether
there is any impact on the design of a cluster system due to the presence of
neuromorphic components. For example, will it move event packets over the
main network backbone, or will there be a separate neuromorphic network
fabric?

To achieve this objective, high-level architecture simulations will be needed
to search the design space for good matches to specific algorithms. Tools that
optimize the system architecture to minimize costs such as energy, area, and
time will be key. This is analogous to the SWaP (size, weight, and power) con-
straints often cited in neuromorphic applications, but here we are less concerned
about spatial restrictions and more concerned with throughput. Developing tools
that help evaluate mixed-precision, highly heterogeneous architectures incorpo-
rating neuromorphic components will be key to enable adoption of these novel
neuromorphic processors. We discuss strategies for co-design by using analytical
modeling tools in Sect. 4.1 and using Joint Neural Architecture and Hardware
Search in Sect. 4.2.
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Fig. 3. Novel Approaches in development (a) 3D memory and compute architecture.
Breakthroughs will allow very high density memory cells to be built. Image reproduced
from [6]. (b) Wafer-Scale Systems such as Cerebras’ Wafer Scale Engine promise high
bandwidth and low latency [13].

3.4 Novel Approaches in Fabrication

Novel approaches in fabrication include building three-dimensional architectures
and wafer-scale integrated circuits as shown in Fig. 3. Early demonstration of 3D
memory has been promising, and dense integration with CMOS processing units
will yield further advantages. Stanford’s Nano-Engineered Computing Systems
Technology (N3XT) program offers insight into 3D architectures via their simu-
lation framework for highly integrated ultra dense (monolithic) 3-D integration
of thin layers of logic and memory devices [5,6].

Wafer-scale processors dramatically reduce communication overhead for
large-scale systems but are very challenging owing to thermal as well as process
yield issues. BrainScaleS is an example of a wafer-scale neuromorphic system
with analog circuits to emulate point neurons and digital communication (dig-
ital interconnect network) fabricated in 180 nm [52]. Current wafer-scale accel-
erator chips like Cerebras’s Wafer Scale Engine demonstrate that wafer-scale
approaches are feasible at lower technology nodes with considerable innovation
in fabrication and packaging of these systems [13].

4 Co-Design of Heterogeneous Architectures

While algorithm-hardware co-design is critical for achieving high performance
and energy efficiency, there is a practical challenge in linking design at these
different scales. In terms of hardware development, a bottom-up approach is
typically followed, whereby architectural designs are assumed and potentially-
accelerated algorithms are sought after the fact. Similarly, because most real-
world AI research focuses on task performance, the implications of algorithm
design choice on potential hardware acceleration are often considered once an
approach is set. To achieve the overall objective, both algorithmic and hardware
optimizations need to be incorporated into a design as illustrated in Fig. 4. Sandia
has developed an open-source python based tool called Fugu [4], that enables
designing Spiking neural networks while being hardware agnostic.
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Fig. 4. Co-design of Algorithms and Architectures is critical for heterogeneous HPC
systems.

4.1 Analytical Modeling

Exploration of accelerator designs has ushered in a new ‘Golden Age in Com-
puter Architecture’ [17]. A spectrum of computer architecture design tools have
emerged to facilitate research into these new computational architectures. This
ranges from analytical assessments to high fidelity simulations. The analytical
approaches assess the steps which must occur for a given neural network to
be computed given the architectural choices of a target platform. This includes
calculating how the computation must be decomposed to pass through the com-
putational units, how many memory accesses are required for retrieving input
values and weights as well as storing results, and how communication structures
facilitate these data movements. These counts are then multiplied by appro-
priate costs attributed to a targeted node technology (e.g. how much energy
a multiplication or memory access requires). Effectively, this forecasts how a
neural network maps onto a target architecture. Example analytical approaches
include Modeling Accelerator Efficiency via Spatio-Temporal Resource Occu-
pancy (MAESTRO) and Eyeriss Eyexam [14,32]. Other analytical tools focus
upon assessing properties of a hardware architecture such as the utilization of
resources and identifying what is an optimal dataflow strategy for the architec-
ture. An example is the Timeloop tool [41]. More accurate, but slower tools offer
cycle accurate simulation capabilities. This increased fidelity often incorporates
component models to attain the cycle accurate analysis and sometimes cou-
ples with executable hardware description level simulations. Examples include
Systolic CNN AcceLErator Simulator (SCALE Sim) and Nvidia Deep Learning
Accelerator (NVDLA) [40,49]. The above techniques have largely focused on ML
accelerator approaches such as systolic arrays and CNN accelerators. Additional
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interest is in how emerging neuromorphic architectures may also be modeled. For
example, NeMo utilizes the Rensselaer’s optimistic simulation system (ROSS)
in a discrete event simulation tool to provide a functional simulation of the IBM
TrueNorth spiking neuromorphic architecture [45]. Other capabilities seek to
account for the performance of emerging device technologies such as CrossSim
and PUMA [1,7]. Effectively, this spectrum of analytical modeling capabilities
help enable co-design and the assessment of the impact of incorporating emerging
ML accelerator and neuromorphic architectures into truly heterogeneous HPC
systems.

4.2 Joint Neural Hardware and Architecture Search

Currently, the deep learning community increasingly leverages systematic param-
eter exploration of the algorithm space, but it generally does not explicitly con-
sider the interaction of algorithms with its hardware implementation. Hyperpa-
rameter optimization techniques are often used to systematically explore sets of
parameters, such as learning rates, kernel widths, and layer sizes to help tune
neural network structures to optimize algorithm performance in new domains.
Hardware constraints can also be viewed as hyperparameters that can be opti-
mized for.

4.3 Learning Algorithms for Neuromorphic Hardware

In contrast to standard artificial neural network (ANN) training methods, neu-
romorphic hardware increasingly utilizes brain-inspired, local-learning rules to
update weights between nodes. Standard ANNs implemented on CPUs are often
trained using extended versions of gradient descent [47] learning algorithms.
Although these ANNs have proven quite effective at specific tasks, even surpass-
ing human performance on some, such as image processing [48], natural lan-
guage processing [33], and playing games [36,57], there are drawbacks to these
networks. Weight adjustments require both a forward and a back-propagation
pass through the entire network. This makes them computationally expensive to
train. They require enormous amounts of labeled data for training and they can
be quite rigid and fail in unexpected and catastrophic ways [21]. Many, tech-
niques have been developed to address these problems. However, such solutions
only treat the symptoms, not underlying issues.

The ability of biological brains to quickly synthesize, process, and act on
large or small amounts of unlabeled data, while consuming very small amounts
of power, have inspired scientists and engineers from many fields. Brains use a
different approach for learning. In local learning, such as Hebbian learning [25] or
spike time dependent plasticity (STDP) [12], the weights are adjusted between
the pre and post synaptic neurons based on their activity.

Local learning may have substantial computational benefits. It enables learn-
ing with spikes without contrived methods to estimate gradients. It is intrinsi-
cally parallel; learning does not need a signal to be forward and then back-
propagated though a network. And it is relatively unsupervised; weights are
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strengthened via correlated activity, not, via a backpropagated error signal. Tech-
niques to effectively utilize local learning in deep networks is an active research
topic in neuroscience and computer science. The realization of local learning will
likely unleash the next generation of adaptive, low-power, deep neural networks.
Neuromorphic hardware is ready to capitalize on these new algorithms.

Fig. 5. Future of heterogeneous high performance computing

5 Future of HPC: Truly Heterogeneous Architectures

Lower costs of fabrication and testing have encouraged development of syn-
chronous digital approaches in the past, but sub-10 nm development of CMOS
circuits is significantly more expensive. Now, the industry is trending towards
more specialized hardware as opposed to general-purpose processors. This is
truly a ‘Golden Age for Computer Architecture’, with new innovations required
from devices to architectures. With AI/ML algorithms as compelling use cases
for these architectures, co-design of hardware and algorithms will be crucial.
The future of HPC is heterogeneous and will fundamentally change the role
of computing in science. Neuromorphic computing is an emerging technology
that can impact HPC in the next 5–10 years. Over the next few decades other
technologies like quantum computing, photonics, newer devices and fabrication
techniques will be potentially impactful as well.

We discussed the example of brain connectomics using serial electron
microscopy (EM) to construct the ‘connectome’ (i.e., the graph of neurons and
connections between them) of progressively larger volumes of brain tissue. Pro-
ducing terabytes of data per day, image analysis of EM data already demands
an HPC approach. However, the ultimate goal of EM mapping of the brain
is to extract computational understanding of its structure in order to advance
neuroscience. Neuromorphic technologies, specifically, provide both low-power
and configurable acceleration of such challenging AI algorithms. If designed
into a heterogeneous system with other accelerators and conventional computing
devices, this technology can augment and extend the capabilities of traditional
HPC platforms as shown in Fig. 5.
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Relevance to DOE and HPC

It is worth noting that the recent advances in EM methodologies have continued
to draw the interest of BRAIN Initiative stakeholders, including NIH and NSF,
as well as potential new investments from DOE. Today, most AI algorithms are
designed independently of hardware considerations, with algorithm performance
the dominant criterion for a successful AI approach. As a result, the extreme
computational costs of emerging AI technologies, especially in deep learning,
have led to an explosion of proposed ANN accelerators. These accelerators are
largely conventional CMOS approaches tailored to accelerate core linear algebra
operations. Future AI solutions, such as those integrated into high-throughput
scientific pipelines, will leverage both deep learning-based ML approaches and
other AI algorithms that may not be ideally suited for the current generation
of deep learning accelerators. Our proposed co-design strategy has two require-
ments: 1) the cumulative performance of an AI system is critical, not simply the
acceleration of any particular kernel and 2) hardware acceleration cannot come at
the expense of algorithm performance. EM image analysis is an attractive ‘test’
application space for a heterogeneous system. Image processing of 3D electron
microscopy data using deep neural networks already has a well-established app-
roach as its solution (flood-filling networks), yet the decomposition of deep neu-
ral connectivity graphs at increasingly large scales is still relatively nascent and
more effective approaches remain to be discovered. The field needs approaches
to acceleration that can maintain performance without significantly increasing
computational cost. This application space is particularly attractive because it
illustrates the data analytics pipeline in a number of scientific research areas
and highlights the challenges associated with both ultra-large scale data and
still rapidly-evolving AI and ML techniques.
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27. Höppner, S., Mayr, C.: Spinnaker2-towards extremely efficient digital neuromor-
phics and multi-scale brain emulation. In: Proc. NICE (2018)

28. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning
on spatio-temporal graphs. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5308–5317 (2016)

29. Jain, V., Seung, H.S., Turaga, S.C.: Machines that learn to segment images: a
crucial technology for connectomics. Curr. Opin. Neurobiol. 20(5), 653–666 (2010)

30. Januszewski, M., et al.: High-precision automated reconstruction of neurons with
flood-filling networks. Nat. Meth. 15(8), 605–610 (2018)

31. Kornfeld, J., Denk, W.: Progress and remaining challenges in high-throughput
volume electron microscopy. Curr. Opin. Neurobiol. 50, 261–267 (2018)

32. Kwon, H., Pellauer, M., Krishna, T.: Maestro: an open-source infrastruc-
ture for modeling dataflows within deep learning accelerators. arXiv preprint
arXiv:1805.02566 (2018)

33. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

34. Li, P.H., et al.: Automated reconstruction of a serial-section Em drosophila brain
with flood-filling networks and local realignment. Microsc. Microanal. 25(S2),
1364–1365 (2019)

35. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345(6197), 668–673 (2014)

36. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

37. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (dynaps). IEEE Trans. Biomed. Circ. Syst. 12(1), 106–122 (2017)

38. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: Graph2vec: learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017)

39. Newsroom, I.: Intel Scales Neuromorphic Research System to 100 Million Neu-
rons 18th March 2020 . URL https://newsroom.intel.com/news/intel-scales-
neuromorphic-research-system-100-million-neurons/#gs.7xo39i. Accessed 13 June
2020

40. NVDLA: (2020). URL http://nvdla.org/index.html
41. Parashar, A., et al.: Timeloop: A systematic approach to dnn accelerator evalua-

tion. In: 2019 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 304–315. IEEE (2019)

42. Peddie, C.J., Collinson, L.M.: Exploring the third dimension: volume electron
microscopy comes of age. Micron 61, 9–19 (2014)

43. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pp. 701–710 (2014)

44. Pinar, A., Seshadhri, C., Vishal, V.: Escape: efficiently counting all 5-vertex sub-
graphs. In: Proceedings of the 26th International Conference on World Wide Web,
pp. 1431–1440 (2017)

http://arxiv.org/abs/1805.02566
http://arxiv.org/abs/1707.05005
https://newsroom.intel.com/news/intel-scales-neuromorphic-research-system-100-million-neurons/#gs.7xo39i
https://newsroom.intel.com/news/intel-scales-neuromorphic-research-system-100-million-neurons/#gs.7xo39i
http://nvdla.org/index.html


364 S. G. Cardwell et al.

45. Plagge, M., Carothers, C.D., Gonsiorowski, E., Mcglohon, N.: Nemo: A massively
parallel discrete-event simulation model for neuromorphic architectures. ACM
Trans. Model. Comput. Simul. (TOMACS) 28(4), 1–25 (2018)

46. Rothganger, F., Evans, B.R., Aimone, J.B., DeBenedictis, E.P.: Training neural
hardware with noisy components. In: 2015 International Joint Conference on Neu-
ral Networks (IJCNN), pp. 1–8 (2015)

47. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

48. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

49. Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., Krishna, T.: Scale-sim: Sys-
tolic cnn accelerator simulator. arXiv preprint arXiv:1811.02883 (2018)

50. Scheffer, L.K.: Graph properties of the adult drosophila central brain. bioRxiv
(2020)

51. Scheffer, L.K., et al.: A connectome and analysis of the adult drosophila central
brain. BioRxiv (2020)

52. Schemmel, J., Fieres, J., Meier, K.: Wafer-scale integration of analog neural net-
works. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence), pp. 431–438. IEEE (2008)

53. Schneider-Mizell, C.M., et al.: Chandelier cell anatomy and function reveal a vari-
ably distributed but common signal. bioRxiv (2020)

54. Schuman, C.D., et al.: A survey of neuromorphic computing and neural networks
in hardware. arXiv preprint arXiv:1705.06963 (2017)

55. Severa, W., Parekh, O., Carlson, K.D., James, C.D., Aimone, J.B.: Spiking network
algorithms for scientific computing. In: 2016 IEEE International Conference on
Rebooting Computing (ICRC), pp. 1–8. IEEE (2016)

56. Severa, W., Vineyard, C.M., Dellana, R., Verzi, S.J., Aimone, J.B.: Training deep
neural networks for binary communication with the whetstone method. Nat. Mach.
Intell. 1(2), 86–94 (2019)

57. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484 (2016)

58. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

59. Thakur, C.S., et al.: Large-scale neuromorphic spiking array processors: a quest to
mimic the brain. Front. Neurosci. 12, 891 (2018)

60. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the ner-
vous system of the nematode caenorhabditis elegans. Philos. Trans. R Soc. Lond.
B Biol. Sci. 314(1165), 1–340 (1986)

61. Witvliet, D., et al.: Connectomes across development reveal principles of brain
maturation in c. elegans. bioRxiv (2020)

62. Xu, C.S., et al.: A connectome of the adult drosophila central brain. BioRxiv (2020)
63. Xu, C.S., Pang, S., Hayworth, K.J., Hess, H.F.: Enabling fib-sem systems for large

volume connectomics and cell biology. bioRxiv, p. 852863 (2019)
64. Yin, W., .: A petascale automated imaging pipeline for mapping neuronal circuits

with high-throughput transmission electron microscopy. bioRxiv, p. 791889 (2019)

http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1705.06963


Truly Heterogeneous HPC 365

65. Zheng, Z., et al.: A complete electron microscopy volume of the brain of adult
drosophila melanogaster. Cell 174(3), 730–743 (2018)

66. Zhou, J., et al.: Graph neural networks: A review of methods and applications.
arXiv preprint arXiv:1812.08434 (2018)

67. Zhou, P., et al.: Ease: Em-assisted source extraction from calcium imaging data.
bioRxiv (2020)

http://arxiv.org/abs/1812.08434


Performance Evaluation of Python Based
Data Analytics Frameworks in Summit:

Early Experiences

Benjamı́n Hernández1(B), Suhas Somnath1, Junqi Yin1, Hao Lu1, Joe Eaton2,
Peter Entschev2, John Kirkham2, and Zahra Ronaghi2

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA
hernandezarb@ornl.gov

2 NVIDIA, Santa Clara, CA, USA

Abstract. The explosion in the volumes of data generated from ever-
larger simulation campaigns and experiments or observations necessitates
competent tools for data wrangling and analysis). While the Oak Ridge
Leadership Computing Facility (OLCF) provides a variety of tools to per-
form data wrangling and data analysis tasks, Python based tools often
lack scalability, or the ability to fully exploit the computational capabil-
ity of OLCF’s Summit supercomputer. NVIDIA RAPIDS and Dask offer
a promising solution to accelerate and distribute data analytics work-
loads from personal computers to heterogeneous supercomputing systems.
We discuss early performance evaluation results of RAPIDS and Dask on
Summit to understand their capabilities, scalability, and limitations. Our
evaluation includes a subset of RAPIDS libraries, i.e., cuDF, cuML, and
cuGraph, and Chainer’s CuPy, and their multi-GPU variants when avail-
able.We also draw on the observed trends from the performance evaluation
results to discuss best practices for maximizing performance.
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1 Introduction

Data-analytics driven scientific discovery is rapidly transforming the landscape
of practically all scientific domains. The explosion in the volumes of data gen-
erated from ever-larger simulation campaigns and experiments or observations
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necessitates correspondingly competent tools for data wrangling and analysis.
At the core of this explosion lies software and hardware infrastructure able to
process massive volumes of data at large-scale.

Data analysis tools and services utility will be determined based on the sci-
entific productivity of their users. Feature improvement in these tools that har-
ness the capabilities of pre-exascale and exascale computer systems is essential.
Equally important is a comprehensive understanding of user and system require-
ments, and limitations of the current data analysis tools, to quantify their impact
in these computer systems.

According to the Python Software Foundation, the Python language has had
sustained user growth in the last few years. Its 2019 survey reports that in 59%
of the cases, Python is being used for data analysis with NumPy [27], Pan-
das [12], Matplotlib [8] and SciPy [26] the most popular data science Python
packages [5]. Similarly, in the OLCF User Survey 2019 [11], users emphasized
the need for support of Jupyter [9] and Python-related software and capabili-
ties. Particularly, “optimized numpy packages, which is a must-have for scientific
applications”. For the interested reader, Raschka et al. [19] provide an up-to-date
overview of Python based frameworks for machine learning, scientific comput-
ing, distributed big data and data analytics, including software and hardware
acceleration approaches using these frameworks.

While a variety of Python software modules are available for OLCF users to
perform data wrangling and data analysis tasks, these modules often lack scala-
bility, i.e. the ability to fully use the computational capability of OLCF’s Summit
supercomputer. RAPIDS [14] and Dask [21] offer a promising solution to scale up
and scale out data analytics workloads on heterogeneous supercomputing systems.
RAPIDS is a fast evolving suite of Python libraries and C/C++ APIs to execute
end-to-end data science and analytics pipelines entirely on GPUs. It uses CUDA
based libraries for low-level compute optimization and offers support for multi-
node and multi-GPU deployments with Dask. RAPIDS offers nearly out-of-the
box, drop-in replacements for libraries such as Pandas, SciPy Signal, and scikit-
learn [18] or provides similar functionality as NetworkX [6] libraries [14].

In this work, we describe the efforts of the OLCF’s Advanced Data and Work-
flow Group and NVIDIA to deploy and evaluate RAPIDS and Dask on Summit.
The process of testing and evaluation of RAPIDS and Dask is critical to inform
technical and user facing aspects and to make the best use of Summit’s resources.
It is also of importance to work with NVIDIA to provide feedback, report issues
and develop, extend or optimize key features of these data analytics frameworks.
We report preliminary results from evaluating cuDF, cuML, cuGraph and CuPy
libraries and their multi-GPU or multi-node variants when available.

2 Technical Overview

OLCF’s Summit supercomputer, based on POWER9 architecture, has unique
hardware features that require further investigation beyond scientific comput-
ing workloads [25]. In particular, we are interested in studying the interplay
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between Summit’s hardware and NVIDIA RAPIDS to scale-up and scale-out
OLCF’s users’ data analysis workloads. In the following paragraphs we provide
an overview of Summit’s hardware and NVIDIA RAPIDS advances aimed at
enabling large scale data analytics.

2.1 OLCF Summit

Summit has 4, 608 IBM Power System AC922 nodes each with six NVIDIA Volta
V100 (16 GB memory) GPUs with 96 GB of HBM2 memory per node providing
over 95% of the floating point capability of the system [24]. Powerful sequential
performance is provided by two POWER9 CPUs paired with 512 GB of main
memory per node. The NVLink 2.0 interface provides intranode data movement
across GPUs and CPUs at 50 GB/s [20] and internode communication occurs at
25 GB/s. On the other hand, Summit’s I/O subsystem is composed of two layers
- the in-system layer and the parallel file system layer. The in-system layer uses
node-local SSDs providing 26.7 TB/s for read operations and 9.7 TB/s for write
operations. The parallel file system layer provides I/O at 2.5 TB/s [17].

2.2 NVIDIA RAPIDS

NVIDIA RAPIDS uses a single data exchange format that is based on Apache
Arrow for all input and output to workflow operations. This format supports
the DataFrame representation and operations which form the core component
of RAPIDS cuDF. The intent of cuDF is to mimic the popular Pandas API
as closely as possible. In addition to operations on DataFrames, cuDF provides
GPU accelerated data readers for several popular on-disk data formats, such
as CSV, ORC, Parquet, and JSON-lines. The combination of GPU accelerated
data readers, parallel parsers, GPU accelerated data wrangling operations, and
API mimicking the Pandas package enables cuDF to directly addresses some of
the most time-consuming aspects of data analytics, namely the ETL (extract
transform and load) phase.

The cuML package in RAPIDS implements GPU accelerated machine learn-
ing methods, again mimicking the API of the popular scikit-learn package. The
cuGraph package in RAPIDS provides NetworkX-like API for graph analytics
workloads. It is important to emphasize that cuGraph by itself is only a set
of graph analytics methods while cuDF handles data format conversions, data
loading and wrangling.

Finally, Chainer’s CuPy is a NumPy-compatible, open source matrix library
[16]. While CuPy is not a library under the RAPIDS framework, it is built
on top of CUDA-related libraries such as CUB, cuBLAS, cuDNN, cuRAND,
cuSOLVER, cuSPARSE, cuFFT and NCCL to take full use of the GPU archi-
tecture. CuPy also includes compatibility with RAPIDS and Dask for memory
management and multi-GPU, multi-node workload distribution.
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3 Performance Evaluation

The main objective of RAPIDS performance evaluation was to understand the
interplay between RAPIDS and Dask for memory management, workload distri-
bution and performance. These are important features that OLCF users should
know about to provide appropriate job resources when running GPU based dis-
tributed analytics workloads on Summit.

At the time of this study, RAPIDS v.0.14 source code was the latest version
available while RAPIDS 0.14 official binaries supported x86 architecture only.
Therefore, we developed build scripts to compile RAPIDS for ppc64le architec-
ture, implemented job scripts to interface it with Summit’s compute nodes and
fine-tuned configurations with help from NVIDIA. We recommend consulting [7],
which is a repository that serves as a preamble to understand concepts around
execution of Dask, Dask-CUDA and RAPIDS jobs on Summit.

3.1 cuDF

We evaluated the performance of Dask-cuDF1 for performing a variety of oper-
ations such as reading csv files, calculating the number of unique elements in
an integer column, performing groupby and merge operations. These operations
were tested for various combinations of number of GPUs and sizes of DataFrames
whose data were contained in csv files of sizes 1 GB, 2.5 GB, 5 GB, 10 GB, and
25 GB. Each csv file consisted of 260 floating point columns and one integer
column and the data for these columns were generated according to a random
normal distribution. We varied the chunk size [2] for reading the file to observe
its effect on the time to read the csv file. For the merge operation, the main
DataFrame was merged with another that was roughly ten times smaller. Addi-
tionally, we separately studied the effect of varying the number of partitions that
the DataFrame was broken into on the time taken to compute the unique, merge,
and groupby operations. The performance of Dask-cuDF was compared against
other DataFrame packages such as cuDF, Pandas, and Dask-DataFrame. In the
case of Dask-DataFrame, the Dask workers were each assigned to one CPU core.
For Dask-cuDF, each Dask-CUDA worker was given a single GPU. In the case
of Dask-cuDF and Dask-Dataframe, we used “persist” instead of “compute” on
the results [3], which lowered computation time since results are not returned
to the python client. Each test was run six times and the mean and standard
deviation for each measurement are reported in the figures.

Figure 1 shows the time taken to read csv files, perform the unique, groupby
and merge operations using Dask-cuDF as a function of number of GPUs and
DataFrame sizes. Figure 1(a) shows that it takes less time to read csv files when
increasing the number of GPU workers. However, the higher than expected load
time is likely caused by using small datasets based on the available GPU memory,

1 In RAPIDS 0.14 multi-gpu/multi-node support was provided by Dask-cuDF. In
newer versions, scale-out support has been added into cuDF GitHub repository and
Dask-cuDF repository has been archived.
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and as a result underutilized GPUs. If deployment is possible on Summit, a
more efficient pipeline would include loading data using GPUDirect Storage
(GDS) [13], which will be integrated into future releases of cuDF. Figure 1(b)
shows that the time required to perform the unique operation on the integer-
valued column generally increased as the number of GPU workers were increased.
Figure 1(c) shows generally increasing time required to perform the groupby
operation as the number of GPU workers are increased. In the case of 10 GB
and 25 GB files, the groupby time decreased when the number of GPUs were
increased from 1 to 3. Performance of groupby-aggregates were improved in a
recent change [15] that will be added in the next release of RAPIDS (0.16).
Figure 1(d) shows that the time required to perform the merge operation also
generally increased as the number of GPUs are increased. Overall, the read csv
operations show some strong scaling trends (negative slope) while the merge,
unique and groupby operations show poor strong scaling, that may be in part
attributed to communication bandwidth and will be addressed in the future
with the use of UCX [23]. Furthermore, the overall time to perform the unique,
groupby, and merge operations appear to have dropped by 1 to 2 orders of
magnitude by using “persist” instead of “compute” for the results.

Fig. 1. Time taken to (a) read csv files of various sizes, perform (b) unique, (c) groupby
and (d) merge operations using Dask-cuDF as a function of number of GPUs and
DataFrame size. The default chunk size and numbers of DataFrame partitions were
used
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Figure 2 shows a comparison in the times required to perform the aforemen-
tioned operations for Dask-cuDF, cuDF, Dask-Dataframe and Pandas when using
a single node of Summit. Pandas used a single python process while cuDF used a
single GPU. Figure 2(a) shows that the time taken to read csv files rises proportion-
ally as the size of the file is increased in all packages, except for Dask-Dataframe.
Figure 2(b) shows that despite having multiple GPU or CPU workers Dask-cuDF
and Dask-DataFrame were two orders of magnitude slower than either Pandas or
cuDF, which are comparably fast at performing the unique operation. However,
Dask-cuDF appears to take almost constant for the unique operation regardless of
the dataframe size. Figure 2(c) shows that cuDF is the fastest at performing the
groupby operation followed by Dask-cuDF and Dask-DataFrame for large files.
However, Pandas is roughly 1–1.5 orders of magnitude slower than cuDF regard-
less of the data size. Figure 2(d) shows that both cuDF and Dask-cuDF are roughly
1 to 2 orders of magnitude faster than Pandas and Dask-DataFrame are 1–2 orders
of magnitude slower than Pandas at performing the merge operation.

Fig. 2. Time taken to (a) read csv files and perform (b) unique (c) groupby and (d)
merge operations as a function of DataFrame size using pandas, Dask-DataFrame,
cuDF, and Dask-cuDF. A full node of Summit was used in the case of Dask-DataFrame
and Dask-cuDF

These trends present a mixed bag that could be explained by the fact that
cuDF and Dask-cuDF are in their early stages of development but are showing
performance and stability improvements with each newer version. Furthermore,
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certain operations can be performed swiftly on GPUs, especially if forking is
not involved in the operations. Though cuDF and Pandas are sometimes much
faster than Dask-DataFrame and Dask-cuDF, these packages are unable to han-
dle large datasets or scale beyond one process or node to take advantage of dis-
tributed computing. Overall, the results observed show some minor jitter which
is expected on large shared production systems like Summit with fluctuations
in the network and I/O loads [25]. Next steps include running the Dask-cuDF
benchmarks with UCX to reduce communication overhead; the numbers pre-
sented in this paper are based on the TCP protocol. Additional performance
improvements for groupby and I/O will also be added in the next release of
cuDF.

3.2 cuML

Methodologies similar to those outlined in the Collaboration of Oak Ridge,
Argonne and Livermore (CORAL2) big data analytics suite [22] were used
to evaluate the performance of the Principle Component Analysis (PCA) and
K-means clustering algorithms in cuML. Tall-skinny input matrices that are
commonly seen in data analytics workloads were employed and the number of
columns (features) were fixed at 250. The input data was generated with random
normal distribution to isolate performance evaluation results from the impact
of I/O, which was covered in previous section. In the experiment setup, vari-
ous usage modes were considered for different input size in an effort to provide
recommendations to cuML users. This includes single-GPU, multi-GPU, and
multi-node (multi-GPU) use-cases with input data size ranging from 1 GB to
96 GB. Experiments were run 10 times to obtain a mean estimation with first 3
dropped as warm-ups.

Fig. 3. cuML PCA and Kmeans, and XGBoost on Dask-cuDF performances: (left)
single-GPu, multi-GPU, and (right) multi-node.

The left side subplot in Fig. 3 shows that a single GPU could process a little
over 4 GB data for PCA and Kmeans. With unified memory support enabled,
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cuML could handle input matrices as large as 8 GB for PCA but with a perfor-
mance penalty of about 70% for this type of tall-skinny matrices. For input data
size smaller than 4 GB, the computational load was not high enough to benefit
from employing multiple GPUs. However, for data sizes larger than 8 GB, using
all 6 V100 GPUs on a single Summit node starts to show a performance boost
in terms of throughput (GB/s). One Summit node was able to accommodate 32
GB input data for PCA and Kmeans, respectively, with a throughput of 13.6
GB/s for PCA and 8.7 GB/s for Kmeans.

In terms of multi-node performance, both strong and weak scaling were exam-
ined, as shown in right-hand side subplot in Fig. 3. In addition to PCA and
Kmeans in cuML, we also considered XGBoost by providing input matrices via
Dask-cuDF given the popularity of the XGBoost method. For the cuML version
we used, the tested algorithms did not demonstrate strong scaling for the tall-
skinny matrices that were 20 or 24 GB in size. On the other hand, the throughput
displays weak-scaling with 75−80% efficiency up to 24 V100s when keeping input
size fixed per node. With rapid developments in cuML releases and underlying
communication of Dask, the scaling trend is expected to improve.

3.3 cuGraph

To evaluate the performance of cuGraph, we performed several common graph
operations and examined the impact of using Rapids Memory Manager (RMM).
The performance of cuGraph was compared against igraph [1]. We compared
two traversal and three structure-discovering operations between cuGraph and
igraph for different graph sizes. Detailed information regarding the graphs used
in this study are listed in Table 1. For breadth-first search (BFS) and single
source shortest path (SSSP) algorithms, we randomly selected 64 vertices as the
source vertices. In the case of K core computation, we iterated the “K” parameter
from 2 to 32. The experiments were performed using a single GPU and run-time
statistics are reported based on 10 runs.

Table 1. Graph used for CuGraph evaluation

Graph name |V | |E| Data Size

coPapersDBLP 540,486 30,491,458 192MB

cit-Patents 3,774,768 16,518,948 250MB

com-LiveJournal 3,997,962 69,362,378 475MB

Hollywood-2009 1,139,905 113,891,327 772MB

Europe osm 50,912,018 108,109,320 906MB

Soc-LiveJournal1 4,847,571 68,993,773 965MB

ljournal-2008 5,363,260 79,023,142 1.2GB

com-Orkut 3,072,441 234,370,166 1.7GB

uk-2002 18,520,486 298,113,762 4.7GB
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Fig. 4. Speedup of cuGraph vs igraph.

As shown in Fig. 4, cuGraph demonstrated a significant speedup on graph
construction and most graph operations over igraph. The result shows operations
that involve vertex-centric computation has the most speedup (up to 870X). We
observed that cuGraph does not scale as well on SSSP and BFS for bounded
degree graphs, which may due to the large number of synchronization steps.
(europe osm contain more uniform degree distribution).

In addition to comparisons against igraph, we tested the effectiveness of
RMM for accommodating larger graphs. Figure 5(b) shows the end to end run-
time for the Louvain method using different sizes for the RMM pool. We did
not observe significant impact of the pool size on either the load & construc-
tion or graph operations. The data suggested that when graph size is smaller
than the GPU memory, using a pool size equal to half the GPU memory does
not impact the performance much. Additional tests are needed for larger graphs
that do not fit within the GPU memory. In the version of cuGraph we evaluated
(version 0.14), we observed that cuGraph has significantly improved the quality
of their Louvain clustering algorithm from their previous versions. In Fig. 5(a),
we see that cuGraph generates the modularity that is compatible if not better
than other serial/parallel implementations of Louvain method. With the above
result, we are confident that cuGraph has become a very stable and fast tool for
single GPU based graph analysis.

3.4 CuPy

CuPy offers a large set of NumPy-like capabilities, however, we considered the
Singular Value Decomposition (SVD) function for this study since it exposes key
complexities in terms of memory management (several allocations and dealloca-
tions) and computation. In particular, given a matrix x of size m×n, CuPy uses
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Fig. 5. Additional statisitcs of cuGraph: (a) Output quality of Louvain method in
igraph, cuGraph and other parallel library. (b) Impact of RMM pool size on cuGraph
run-time.

cuSOLVER to solve the SVD that returns two matrices, u and v, of size m×m
and n×n, and a vector s containing the singular values of x. On the other hand,
experiments were run 10 times with first 3 dropped as warm-ups and, the mean
and standard deviation for each measurement are reported in the figures.

CuPy’s SVD memory management was evaluated by running the SVD algo-
rithm on one GPU with randomly generated values for the input matrix values
and the matrix size was varied as shown in Table 2. CuPy-Dask configuration
used one Dask-CUDA worker per GPU and the input matrix was partitioned into
different chunk sizes [2]. The objective of this test was to determine the largest
problem one GPU could handle, its performance under different workload and
chunk sizes.

Table 2. Different matrix sizes used for CuPy’s SVD evaluation

Matrix size Data size (MB)

10K × 1K 76

20K × 1K 152

40K × 1K 305

80K × 1K 610

160K × 1K 1220

320K × 1K 2441

640K × 1K 4883

Figure 6 shows SVD’s time-to-solution took a few seconds for different work-
loads and chunk sizes. In general, a chunk size of 8K × 8K delivered consis-
tent behavior across mid-size matrices and best performance for larger matri-
ces (e.g. 640K × 1K or 4883 MB). In addition, Fig. 6 shows that CuPy was
unable to perform SVD for matrix sizes larger 40K × 1K while CuPy-Dask
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Fig. 6. SVD timings with CuPy and CuPy-Dask using different chunk sizes.

configuration overcame this limitation. For the interested reader, a similar per-
formance evaluation for solving SVD with NumPy-Dask was reported in [10].

The workload distribution experiment consisted of performing a general scal-
ability evaluation, strong scaling and weak scaling tests. We used CuPy-Dask
configuration to distribute the SVD workload using synthetic matrices (Table 2)
partitioned by the chunk size that delivered best performance in the previous
experiment, i.e. 8K × 8K. For these experiments, the SVD computation was
distributed on one to six GPUs wherein each Dask-CUDA worker was given a
single GPU.

Fig. 7. CuPy-Dask’s SVD overall scalability results for a single node of Summit

The general scalability test showed performance trends similar to our first
experiment (Fig. 7), i.e. increasing the workload size also increased run-times. In
particular, adding more GPUs for a given workload did not necessarily improve
runtimes significantly (e.g. - matrix of size 160K × 1K or 1220 MB). Poor per-
formance for matrix sizes below 1GB can be explained by low GPU occupancy.
Furthermore, it was not possible to compute matrices larger than 640K×1K or
4883 MB even by using more GPUs due to limitations in the current cuSOLVER
10.x [4].
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For the strong scaling test, we used the largest workload, i.e. a matrix size
of 640K × 1K or 4883 MB while varying the number of GPUs. For the weak
scaling test, we increased the workload by a factor of two as in Table 2, starting
with a matrix size of 20K × 1K or 152 MB.

Fig. 8. CuPy-Dask’s SVD performance on one Summit node. a) Strong scaling perfor-
mance. b) Weak scaling performance.

Figure 8 reports strong and weak scaling results. Though the strong scaling
plot shows a curve with negative slope, as expected for strong scaling tests, the
steepness of the slope or efficiency decreases substantially after two nodes. The
weak scaling plot shows that the computation time remained roughly constant,
as expected for weak scaling tests, up to 3–4 GPUs, but then increased past 4
GPUs. The performance trends in Fig. 8(b) could be explained by the increas-
ing communication overhead due larger workload distribution across increasing
number of GPUs.

4 Conclusions

In this study, we evaluated a subset of the NVIDIA RAPIDS family of packages
on the Summit supercomputer. In parallel to this study, we explored operational
and technical aspects such as compilation, installation, bug reporting, integration
with the LSF scheduler and job configuration. Based on the needs of OLCF users
for Python-based data wrangling and machine learning, we limited our study to
NVIDIA RAPIDS’ cuDF, cuML, cuGraph and Chainer’s CuPy, and their dis-
tributed equivalents in combination with Dask when available. We evaluated
the performance of certain functions in each package as a function of (randomly
generated) input data sizes and the number of GPUs (where applicable) against
counterparts in other similar software. Jitter and minor inconsistencies in per-
formance were observed for operations on Summit for a variety of factors that
have been discussed previously. Nonetheless, we observed similar performance
trends on Summit, at node level, and on a NVIDIA DGX-1.

Dask-cuDF (now referred to simply as cuDF) displayed no clear relationships
between times required to perform the operations as a function of number of
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GPUs. Note that we called persist instead of compute on the delayed / lazy
Dask computations, which may be attributed to improved wall times. Overall,
Dask-cuDF was generally 1–3 orders of magnitude slower than pandas, Dask-
DataFrame, or (single-GPU) cuDF for the version of RAPIDS we evaluated.

cuML was in general 1–2 orders of magnitude faster than scikit-learn on
Summit. Single-GPU cuML would suffice for input size smaller than 4 GB. Sim-
ilarly, it would be most cost-efficient to use multiple GPUs within a single node
for data sizes between 8 GB to 20–30 GB. Finally, multi-node cuML could per-
form analytics relatively efficiently on input datasets larger than 100s of GB on
Summit.

When comparing cuGraph against igraph, we observed up to 76X speedup
for file loading and graph construction; up to 130X speed up for graph-traversal
operations; and 870X speedup for structure discovery operations. RMM facili-
tated cuGraph operations to scale beyond the available memory on the GPUs
very effectively. In addition, the output quality for heuristic method has become
compatible if not better than other implementation.

The SVD algorithm in CuPy was evaluated for a variety of data sizes and
GPUs by taking advantage of Dask for parallelism. The best performance was
obtained for matrix chunk sizes of 8K × 8K. CuPy-Dask was found to be as
much as 9X faster than Numpy-Dask for the SVD operation.

NVIDIA RAPIDS is continuously evolving, efficiency and performance is
expected to improve further from that which was observed in this study in sub-
sequent versions. Besides the obvious performance benefits of using RAPIDS
instead of other counterparts, we expect RAPIDS’ user-friendly and familiar
Python API to improve the productivity of OLCF users’ for data analytics work-
loads. We plan on developing documentation on the usage and best practices
based on this study to efficiently utilize the Summit’s computational resources.

Acknowledgments. This research used resources of the Oak Ridge Leadership Com-
puting Facility (OLCF) at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.
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Abstract. The road to successful management of a large research and develop-
ment (R&D) project requires comprehensive and flexible capabilities to foster
effective and timely communication, tracking, and decision-making. Best prac-
tices developed and employed by the Exascale Computing Project (ECP) afford
a comprehensive example of management practices that benefit this type of a
large-scale, physically dispersed R&D project. This article will summarize the
ECP’s hybrid approach to project management, which incorporates principles of
the Department of Energy (DOE) order for the management of large capital asset
projects (DOE O 413.3b) and elements of industry-standard Agile practices, as
well as the tools that promote extensive collaborative endeavors.

Using a hybrid approach to managing project elements is a key tenet within
the ECP and is implemented in part by ensuring that information such as detailed
technical plans and achievements, budget and cost information,milestone creation,
and progress metrics are readily accessible to all participants. The functionality to
enable this broad, dynamic access is provided by a variety of essential and flexible
tools, which the ECP has found to be invaluable in managing work and com-
municating with project team members and stakeholders. The strong integration
of R&D efforts results in a dynamic environment in which frequent input from
management, collaborators, and stakeholders is essential.

This overall approach provides the guidelines and policies, processes, infor-
mation, tools and services, and output that are necessary for the effective manage-
ment of large, complex projects. Such an approach may also be applied to smaller,
less complex projects for a similar outcome.
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1 Introduction

Planning and executing the ECP presents a considerable project management challenge
because of (1) its scale, (2) the R&D focus on applications that meet mission needs, (3)
the software tools needed for capable computing platforms, and (4) the integration of
ECP applications, software, and hardware innovations into the DOE high performance
computing (HPC) facilities. The long-range (multiyear) plans of an ECP R&D team
include intermediate progressive steps toward final deliverables. The strong integration
of R&D efforts between the technical focus areas results in a dynamic environment in
which frequent input from collaborators and stakeholders is essential. These dynamics
are consistent with an iterative, incremental development approach in which subsequent
requirements and feature sets are likely determined or finalized with input from the
results of previous activities and refinement of information about future computer archi-
tectures. This requirement to be “agile” while maintaining a more traditional earned
value performance baseline against which to assess progress leads to a hybrid approach
allowing for both practices.

In addition to its scale and focus, project complexities include two direct funding
sources and multiple distributed participants (over 1000 participants from 15 national
laboratories as well as subcontracted effort from 75 universities and 60 companies)
requiring considerable integration and coordination. The project’s complexity extends
to the development and implementation of the plan for measuring andmonitoring perfor-
mance and progress, including the need for a hybrid approach that incorporates princi-
ples of the standard DOE Earned Value Management System (EVMS) [1] and elements
of industry-standard Agile [2] practices. EVM is a technique for measuring project
performance and progress in an objective manner. It combines measurements of scope,
schedule, and costs and works best when these elements are well defined. Agile practices
include adaptive planning and evolutionary development. Many performance measure-
ment approaches currently used in the ECP are unique but may also be useful to small,
less complex projects.

2 Background

In 2009, the DOE began to anticipate the need for exascale computing as part of the
solution to many of the nation’s, and even the world’s, most challenging problems. In
fiscal year 2016, a 7 year combined effort (2017–2023) by the Office of Science’s (SC’s)
Advanced Scientific Computing Research (ASCR) program and the National Nuclear
Security Administration’s (NNSA’s) Advanced Simulation and Computing (ASC) pro-
gram was begun to prepare and uplift the high performance computing community
toward capable exascale platforms, software, and applications. The ECP is a multi-
institution project and is structured into three technical focus areas to address require-
ments for Applications Development (AD), Software Technology (ST), and Hardware
and Integration (HI). The project incorporates the principles of DOE’s Order 413.3b [3]
, the order for Program and Project Management for the Acquisition of Capital Assets,
and other DOE project management practices. Even though ECP produces no capital
asset, the DOE required the project to be managed under this order and tailored to fit the
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requirements as a best practice for managing this large and complex project. The ulti-
mate question is whether an R&D project operating under the guidance of DOE Order
413.3b, such as ECP, can determine its goals and desired outcomes, measure progress
toward those outcomes, manage project communications, and provide interim results to
all stakeholders so that at the end of a specified period those outcomes can be realized.
To do so, the ECP has adopted a hybrid approach to traditional EVM practices that
incorporates Agile methodologies. Additionally, ECP has embraced a set of tools that
enable project participants to manage work and communicate broadly through the use
of dashboards, reports, and collaboration areas.

This paper will highlight some of the unique aspects of the ECP project management
practices and toolswhichmay be applied to other R&Dprojects regardless of their size or
complexity. The blending of traditional EVMS andAgile project management principles
will be explored and noteworthy practices highlighted in an effort to inform early career
project managers as well as seasoned practitioners. A unique case study will further
highlight how a variety of performance tracking approaches ranging from level of effort
to decomposition of work into small pieces (i.e., stories) can be used to effectively
manage project work. Lastly, a robust set of project management tools used to provide
a tightly integrated tracking and reporting management system will be cataloged and
lessons learned shared.

3 Implementing a Hybrid Approach in an Earned Value
Environment

The application of an iterative, or agile, approach to project management in a tradi-
tional EVMS environment can be challenging and, at the same time, crucial to effective
project performance monitoring and reporting. Traditional EVMS techniques provide
a useful methodology for planning and measuring project performance. Standard per-
formance measurement principles employed in a traditional EVMS include planning
and decomposing work scope, developing a performance measurement baseline (i.e.,
scope, schedule, cost, quality, risk) using actual costs incurred and recorded, assessing
accomplishments with objective metrics and key performance parameters, analyzing
variances, forecasting impacts, estimating completion, and reporting. There are many
benefits of an EVMS, including the integration of scope, cost, and schedule. It provides
tools for assessing cost and schedule performance and assesses the impacts of perfor-
mance on the project objectives. Changes to the plan are carefully identified, analyzed,
and incorporated into the baseline plan with formal change control and approval pro-
cesses. Forecasting estimates to completion is an important aspect of an EVMS and is
critical when communicating project forecasts for completion with cost and schedule
objectives.

In today’s project environment, it is possible that many projects have software/R&D
scope that requires an Agile methodology to effectively monitor and track performance
within an EVMS. To complicate this issue, many such projects inherently contain uncer-
tainty and therefore are difficult to measure in a traditional EVMS. Scope requirements
may not bewell defined in the planning and execution phases of a project. Software devel-
opment activities cannot be easily measured using objective performance measurement
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techniques due to the complex nature and uncertainty of the work. The 12 principles
of the Agile Manifesto [2] provide guidelines for a workable solution to managing the
software development and R&D portion of the work scope. Three key Agile principles
are

• “welcome requirements, even late in development. Agile processes harness change
for the customer’s competitive advantage,”

• “working software is the primary measure of progress,” and
• “continuous attention to technical excellence and good design enhances agility4.”

The Agile Manifesto [4] summarizes the important elements of applying Agile prin-
ciples and methodologies, stating “individuals and interactions over processes and tools,
working software over comprehensive documentation, customer collaboration over con-
tract negotiation, responding to change over following a plan.” The first Agile concept
(e.g., “individuals and interactions” is in contrast to the second traditional concept (e.g.,
“processes and tools”) [2] . By using a hybrid approach, it is possible to meet the needs
of many projects that have a mix of hardware/software or design/R&D activities within
the same project. EVMS can be tailored to follow the principles of EVMS and include
Agile principles and practices. An example of this approach is assessing story points
(stories are similar to steps in Primavera (a project portfolio scheduling software)/points
give weights to the stories) to develop an EV-based assessment.

The hybrid approach incorporates Agile methods in a traditional EVMS framework
to meet performance measurement requirements by integrating traditional reporting
requirements with R&D/software work scope requirements.

EVMS can be tailored to follow the principles of earned value and include Agile
practices. The approach permits agile methods, where applicable, and integrates the
results with traditional earned value. An example is to assess story points to develop an
EV-based assessment of story point accomplishments. Plan Value represents the total
number of story points planned and Velocity represents the number of story points
completed per time unit. The cumulative number of story points completed is analogous
to EV.

Performance measurement methodologies [weighted milestones, Level of Effort
(LOE)] are also accepted practices for progress measurement on these types of projects
that include scope uncertainty. Monitoring milestones at a lower level of a work break-
down structure (WBS) is informative, consistent with EVM principles, and an accepted
practice on a hybrid project. Monitoring milestones in an agile environment can be
applied by calculating the ratio of (story points completed)/(total story points in a release)
– a good measure of percentage complete in a hybrid approach.

Forecasting using EV data is a critical aspect of EV performance measurement. An
approach in the hybrid application is basedon average velocity (story points) representing
the estimate to complete (ETC) in dollars. The estimate at complete (EAC)= historical
average velocity (i.e., completed story points) × number of iterations in the release ×
labor cost of team. A key assumption is that the ratio of (story points completed)/(total
story points in a release) is a good measure of the actual percent complete.

The NDIA Agile and EVM Guide calculates EAC as Actual cost plus (velocity x
remaining backlog) as follows [5, 6].
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The WBS framework in place for the project can be used to summarize the project
performance using JIRA (an issues management software) to track progress on mile-
stones at the lowest level of the WBS and summarize to a higher level WBS element.
The EV methodologies should always be documented in the Project Management Plan.

The hybrid approach has been used on one-of-a-kind or state-of-the-art projects.
A good example is the implementation of controls software on a scientific accelerator
beamline project. [7] As discussed, the traditional EVMSmethodology does not provide
the needed flexibility for assessing performance onwork that has changing requirements,
continued refinement/revisions to scope, uncertainty, and coding/testing (a basic charac-
teristic of software and R&D projects). The hybrid approach is an effective methodology
for measuring project performance for these types of projects, as it addresses the needs
and nature of software/R&D project work scope by applying Agile methodology for
measuring performance within the framework of the traditional project measurement
and reporting structure of EVMS.

4 Case Study: Implementing a Hybrid Approach for ECP

The ECP delivers products and outcomes centered on applications, software, and the
integration across applications and software for specific hardware technologies or exas-
cale1 system instantiations. The outcome of the ECP is the accelerated delivery of a
capable and sustainable exascale computing ecosystem to provide breakthrough solu-
tions addressing the nation’s most critical challenges in scientific discovery, energy
assurance, economic competitiveness, and national security. The ECP is designed to
create more valuable and rapid insights from a wide variety of applications (“capable”),
which requires a much higher level of inherent efficacy in all methods, software tools,
and ECP-enabled computing technologies to be acquired by DOE national laboratories
(“ecosystem”).

1 Ability to perform 1018 operations per second
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To deliver on its mission and achieve its vision of capable exascale computing, the
ECP is organized into three major integrated technical focus areas, each with specific
technical objectives within the project, as summarized below. The WBS also includes
the project management focus area which provides themanagement and support services
to the project.

4.1 Application Development (AD)

Developing exascale-capable applications are a foundational element of the ECP and
the vehicle for delivery of mission need on the targeted exascale systems. The ECP
launched its mission need application projects, each targeting a specific exascale chal-
lenge problem—to address a high-priority strategic problem of national interest that is
intractable without performant or efficient use of exascale computing resources. These
applications span chemistry, materials, energy, earth and space science, data analytics
and optimization, and national security. The AD focus area will create or enhance the
predictive capability of these applications through algorithmic and software advances
via co–design centers and targeted development of requirements-based models, algo-
rithms, andmethods. In addition, the AD focus area provides systematic improvement of
exascale system readiness and utilization and demonstration and assessment of effective
software integration.

4.2 Software Technology (ST)

Applications are built on underlying software technologies. As a result, software tech-
nologies play an essential supporting role in application efficacy on computing sys-
tems. The ECP’s ST effort is developing an expanded and vertically integrated soft-
ware stack that includes advanced mathematical libraries, extreme-scale programming
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environments, development tools, visualization libraries, and the software infrastruc-
ture to support large-scale data management and data science for science and security
applications. The ST efforts complement and integrate into the broader scientific soft-
ware ecosystem that includes capabilities from industry and the broader HPC R&D
community.

4.3 Hardware and Integration (HI)

The HI focus area ensures a capable exascale computing ecosystem by integrating the
ECP applications, software, and hardware innovations into theDOEHPC facilities (here-
after referred to as the “Facilities”). The scope of HI includes support for US HPC
computer industry (“vendor”) R&D focused on innovative architectures for competitive
exascale system designs, hardware evaluation, tested exascale software products and an
automated testing capability deployed and integrated at Facilities, accelerated applica-
tion readiness on targeted exascale architectures, access to resources at the Facilities,
and training on key ECP technologies to accelerate the software development cycle and
optimize productivity of application and software developers.

The HPC systems (including testbeds and datacenter site preparation) are procured
as separate DOE projects and therefore are not formally within the ECP’s scope. HPC
system procurements will be executed as projects by the DOE national laboratories
hosting the systems. Acquisition and deployment of production systems will follow
DOE SC and NNSA policies and procedures for major scientific computing facility
upgrades. The fact that DOE HPC system procurements occur outside ECP’s formal
scope means that intimate integration and co-dependency with DOE computing facility
operations and procurements are critical to the success of the ECP.

4.4 Assessing Performance Measurement

As described above, ECP has adopted a hybrid approach to assessing performance mea-
surement. Each ECP focus area has chosen a performancemeasurementmethod that best
matches their work scope and method of accomplishment. The various methods chosen
include using stories to allow for progress measurements with long duration activities,
refinement of baselined activities to allow for agile development, using weighted mile-
stone achievement with short duration activities, and LOE for management activities
(Fig. 1).

AD teams plan and execute work in a manner that is typically different from more
traditional software development and construction projects. The inherent research com-
ponent makes fine-grained planning impractical as the scope and schedule of future
tasks are often dependent on the results of current tasks. Several concurrent activities
are usually being executed by people working on the project part-time; therefore, accu-
rately estimating start and end dates of the tasks required to complete the activities is
a challenge. Rather than artificially schedule interdependent pieces of work, each sub-
project has defined the major technical goals as activities in the formal schedule. These
activities tend to be longer in duration than those typically used for determining EV,
so each activity is broken into smaller pieces of work using features of both the Agile
and traditional project management systems, which allow for subtasks to be “earned”
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Fig. 1. ECP uses different performance measurement methodologies to measure progress.

as they are completed but are not scheduled with a start and finish date. Thus, while
the activity may be of long duration, subtasks (stories/steps) can be used to provide
progress indicators using the percent complete method. Each story/step has a value, and
upon completion, this value is earned, and a percentage of the total value assigned to the
activity is also earned.

ST teams plan and execute work in a manner that is more typical of agile soft-
ware projects but tailored to meet the unique requirements of software development
subprojects of the magnitude and complexity of ECP, along with satisfying mandatory
requirements for traditional EV project management. The methodology chosen provides
agility with a cadence ofmore planning fidelity as time proceeds.With thismethodology,
a baseline plan with high-level definitions is developed. Each year the plan is refined to
include four to six activities, each of which is of relatively short duration and is assigned
a budget, a start and end date, a high-level description, and completion criteria. Eight
weeks prior to the start of an activity, a high-fidelity description of an execution strategy,
refined completion criteria, and staffing details are developed. In this way, ST has both
a long-term plan and a method for agilely adjusting as necessary.

HI teams use a weighted milestone approach, with each subproject dividing work
into 3 month increments and ending in an observable milestone. Each activity has a
summary, description, execution plan, completion criteria, and planned start and finish
dates. Once completed, each activity is earned. The HI work scope also includes vendor
milestones, which are earned when contractual milestones are completed. This produces
only schedule variances as themilestone payment is fixedvia the contractwith the vendor.

Due in part to the complexity of ECP, but also inherent to software development R&D
scope, an organizing principle for the ECP is to ensure all staff can see and have ready
access to the detailed technical plans for all project areas. Furthermore, the database
for detailed plans must be continuously viewed and updated by the ECP staff, which
is consistent with Agile project management principles. To achieve the requirement for
plans, interactions, and information to be sharedwith ECP contributors and stakeholders,
a suite of tools was acquired and further developed to support this requirement.
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5 Tools

Integration is a key operational tenet within the ECP and is implemented in part by
ensuring that information such as detailed technical plans and achievements are readily
accessible to all participants. A hybrid approach to project management almost neces-
sitates the need for an equally flexible suite of project management tools. The func-
tionality to enable this broad, dynamic access is provided by a suite of tools described
here, which the ECP has found to be invaluable in managing work and communicating
with teams. The tools must allow the end user the ability to status work without the
overhead of a complex project management interface, but also provide the robustness of
a tool that can assimilate large amounts of data and display the resulting information in a
highly consumable reporting structure. The strong integration of research, development,
and deployment efforts results in a dynamic environment in which frequent input from
collaborators and stakeholders is essential.

Integration for a project of this size must allow considerable coordination among
geographically and institutionally dispersed team members to operate efficiently. Chal-
lenges to delivering this functionality include requirements gathering over a broad set
of partners; disparate institutional cyber security requirements; implementation of an
intuitive training program to bring participants up to speed quickly; tool procurement
and deployment costs; and maintenance of a consistent, common database with real-
time data analytics and dashboarding. Portability, scalability, and flexibility are also key
requirements for the tool suite given the ever-changing environment and the need to
repurpose the tools to other DOE projects.

Within 6 months of the project’s initiation, the ECP IT team identified tool require-
ments; evaluated, procured and deployed a suite of tools; and trained over 400 IT and
project team members. Critical to this effort was the early identification of key sponsors
and stakeholders and the collection of clear requirements in each of the development
areas (e.g., project management, collaboration, workflow automation, and reporting).
Several project management and digital workflow management tools (e.g., Deltek ERP,
MS Project, ServiceNow, Trac)2 were evaluated against criteria including ease-of-use,
user interface, reporting and analytics capabilities, security, and total cost of ownership,
to name a few. While each of these tools provided compelling reasons to pursue further,
the ECP IT team found that the Atlassian suite of tools were most closely aligned to its
key selection criteria. The Agile suite of tools contains project management (Atlassian
Jira), collaboration (Atlassian Confluence), and workflow automation (Atlassian Ser-
vice Desk) tools that required minimal customization. The ECP IT application develop-
ment team used the Atlassian suite and Agile development and work planning methods
to effectively deploy the project management tools to the ECP staff. The use of daily
standups, Kanban board taskmanagement, effective team collaboration and communica-
tion, self-driven teams, continuous deployments with key customer-identified features,
and metrics driven decision making were all critical components for the deployment

2 The co-author has experience with these tools and found them to be very effective and in many
cases, industry leading in the project management and IT service management fields. Several
factors were considered during tool evaluation and the selection of the Atlassian suite no way
reflects negatively on the capabilities these tools offer.
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of these tools. The Atlassian tools were augmented by project management industry
standard scheduling (Primavera P6) and cost analysis (Deltek Cobra) tools to supply a
comprehensive yet intuitive end user experience. Interfaces were developed that would
allowproject teammembers to input deliverable status into the Jira toolwhichwould then
be automatically converted (and subsequently tracked) in the Primavera P6 scheduling
tool where seamless reporting occurs. These tools were rounded out with robust persis-
tent chat (Slack) and video-teleconferencing (Zoom for Gov) tools that could be easily
deployed and scaled to meet project user requirements.

Team members follow their own institutional cyber security and access control
requirements, which rarely align across organizations. The ECP information technol-
ogy group teamed with cyber security counterparts at partner institutions to develop and
maintain a comprehensive cyber security plan for the ECP tools. The plan addressed data
classifications in the ECP IT systems and how this data is protected, how access controls
(e.g., audit frequency, password refresh intervals) provide entry into the IT systems,
and the network monitoring tools and web security policies used to control and govern
the ECP IT infrastructure. By identifying the ECP data classifications and brokering
a relationship with the partner cyber security experts early in the project, the ECP IT
architecture has remained relatively unchanged since the initial deployment.

The tools are housed on an Amazon Web Service (AWS) instance. AWS provides
security, affordability and reliability. This instantiation was established through a con-
tract with Apnatomy, LLC. This Atlassian expert partner is thoroughly familiar with the
tool functionality and deployment methods, which expedited the implementation. The
tool suite was deployed using base functionality to quickly evaluate the tool’s perfor-
mance, while meeting project requirements. The team chose to minimally customize the
tools, reducing overhead associated with implementing patches and update compatibil-
ity. ECP-specific trainingmodules were created and deployed byApnatomy. The content
was provided using a combination of live instructor-led training and videos that could
be accessed at any time for future use.

As the ECP continues to evolve and expand, it becomes even more important for
the entirety of the project team to work from a common database and be able to quickly
see project performance against its baseline goals and objectives. A key component of
the tool suite is a set of dashboards and reports that can be easily accessed and con-
figured, such as the cumulative monthly milestone reports shown in Fig. 2. A lesson
learned was that by using clearly defined user groups, access to subprojects, collabora-
tion areas, reports, and dashboards is controlled more efficiently than by traditional ad
hoc user groups. Having specified owners of these groups who can quickly determine
groupmemberships is another key component for user access controls. Data integrity and
availability have been traditional challenges for database architects and administrators.
Web-hosted services such as AWS provide security and availability for data that is lead-
ing in the industry. The disaster recovery and failover benefits were key considerations
for choosing a cloud-hosted datacenter architecture. The Atlassian tools with an overlay
of business information tools such as EazyBI provide a simple but effective real-time
reporting structure that can be accessed 24 × 7 on a need-to-know basis. Project infor-
mation is dynamic, and the reliance on static reporting is drastically reduced. The ECP
identifies and meets reporting needs while maintaining a rich database of information
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that can be shared with other project stakeholders. Information that has been historically
captured in emails is now captured in a tightly integrated set of tools.

Fig. 2. ECP milestone reports by due date (cumulative).

Capturing lessons learned and the application of those lessons is a key component
of any DOE project. As such, the transference of project management tools to similar
projects is an important consideration when scoping tool selection criteria. The suite of
tools and their underlying configurations are easily ported to other projects with min-
imal development and system administrative effort. Defined processes for maintaining
out-of-the-box configurations is crucial to maintaining tool portability to other projects.
With the exponential growth of the project, the ECP IT team has provided a scalable,
economic, and flexible solution. Using automated scripts and logical business process
workflows, the tools accommodate changing user requirements and additional database
loads through a thoughtful architectural design. The suite of tools is flexible in accom-
modating a specific, but unique, set of business processes ranging from the tracking of
project changes to the onboarding and offboarding of project personnel. Once the under-
lying architecture has been decided, additional functionality can be added with minimal
effort.

The team is continually challenged by expenditures related to the ECP IT solu-
tions. Tool bundling, outyear planning, and the use of cloud-hosted services provide
an attractive cost-per-user pricing model for a well-rounded set of tools. Processes are
implemented to deactivate stale accounts and offload modules and add-ons not being
used. By using AWS, cost savings were realized by throttling performance requirements
based on usage instead of the traditional data models that are based on flat rate fees,
regardless of usage. These measures help to maintain an affordable product offering that
has remained relatively constant throughout the project.

Tools to manage project deliverables, collaborate real time, report on project deliv-
erables, and automate repeatable processes are all needed to make the project perform
efficiently and to deliver on the DOE’s goals and objectives. By gathering a clear set
of requirements and identifying key stakeholders (e.g., sponsors, users, cyber secu-
rity experts) early in the deployment process, a streamlined deployment of tools is
easily obtainable for a project of this complexity. Additionally, using industry-leading
approaches such as cloud architectures and Agile development, while maintaining stan-
dard system configurations, will deeply reduce future issues related to patch and update
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compatibilities while helping to reduce the overall cost of product ownership. Lastly,
using tools that are easily portable to other projects leverages past lessons learned while
helping to maintain fiduciary responsibility for the DOE and its sponsors.

The suite of tools identified above and internal SAP (accounting/business manage-
ment software) data bases, provide ECP with extremely robust yet flexible options for
creating, tracking, reporting, and communicating with ECP staff and stakeholders.

6 Related Work

There is an increasing demand for organizations to be adaptable to the changing needs
of projects in the project management environment. Organizational change and adaptive
methodologies are the drivers to providing variedmethodologies tomanage projects. The
use of Agile methods in a structured project environment provides effective methods for
measuring project performance. This is the case for projects in which a component of
the project scope that does not typically benefit from traditional metrics for budgetary
performance or for tracking deliverables. Monitoring budgetary performance and deliv-
erables is typically required by senior leadership and the customer. Project leaders need
reliable report submittals that track and forecast cost and schedule performance through-
out the project life cycle. EVM adapted for Agile methods, called the hybrid approach,
can provide performancemetrics based on the EV ofwork performed on amonthly basis.
In addition, this performance methodology is designed to generate estimates of work
completion planned in the future based on past performance. It is recognized that a sys-
tems approach to managing project performance should be structured to meet the project
objectives and customer reporting expectations and be flexible enough to accommodate
work scope that typically lends itself to an Agile methodology but resides in a tradi-
tional project environment (hybrid project). Agile applied to a hybrid project is a valued
methodology for meeting the project performance measurement needs and customer
reporting requirements within a more structured project management environment.

7 Conclusion

TheECP is a challenging project because of its scale andR&D focus. The combination of
traditional and Agile methodologies for determining progress with the right set of tools
provides ECP the ability to determine goals and desired outcomes, measure progress
toward these outcomes, manage project communications, and provide interim results.
The hybrid approach is an effective methodology for measuring performance for this
type of project, as it addresses the needs and nature of software/R&D project work
scope by applying an Agile methodology within the framework of traditional project
measurement and reporting structure of EVMS. The lessons learned by ECP can be
tailored and applied to similar but smaller or less complex R&D projects.
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Abstract. With emerging workflows incorporating both modeling and
simulation scale-up workloads along with large scale data analytics and
machine learning scale-out workloads, new machine architectures that can
support both simultaneously is essential. New memory technologies, such
as the persistent memory modules supported by the latest Intel chips
offer a persistent storage device accessible on the memory bus. This newly
available technology niche offers an opportunity to multipurpose a mem-
ory/storage tier. Further, with traditional storage moving to solid state
technology, where to divide between memory and storage is less clear.
NVMe and other high-performance storage devices offer extreme storage
performance at increasingly affordable prices allowing them tomasquerade
as slow memory. Which of these devices should be considered memory and
which storage varies with the workload. The software infrastructure to bet-
ter support these hybrid technologies is crucial for widespread adoption.

To achieve the vision of hybrid use memory/storage tier(s), multiple
system software components will have to be changed. The node oper-
ating system must be able to reassign the hardware into different roles
and issues with purging and pre-staging data with persistent on-node
stores must be addressed. Additional possibilities for compute node area
shared resources must also be considered for a complete solution. This
paper explores the variety of potential possibilities and the challenges
with achieving this vision while laying out a plan to achieve the goals.

1 Introduction

Traditionally the performance differences between memory and storage devices
have been orders of magnitude clearly delineating device purposes. With the intro-
duction of NAND-flash devices, application developers and storage researchers
each embraced the technology to expand their domain’s capabilities. With the
NVMe standard commonly moving these devices onto the PCI bus, the impact
on application developers and storage researchers has been profound. Both groups
saw a technology capable of revolutionizing their domain. The “right” way to use
this technology and how to “properly” provision and allocate it has caused differing
priorities to generate opposed answers. With persistent memory (PMEM) devices

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use
of this work by or on behalf of the U.S. Government.

c© National Technology & Engineering Solutions of Sandia, LLC 2020
J. Nichols et al. (Eds.): SMC 2020, CCIS 1315, pp. 394–407, 2020.
https://doi.org/10.1007/978-3-030-63393-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63393-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-63393-6_26


Memory vs. Storage Software and Hardware: The Shifting Landscape 395

on the memory bus offering even higher performance and load/store access, the
“right” way to think about the devices has gotten harder.

While these hardware changes are moving into the mainstream, traditional
scale-up HPC workloads are being asked to live alongside scale-out analytic and
machine learning tools that work best with different hardware configurations.
New platforms are being asked to run both scale-up and scale-out workloads.
Projected exascale applications are expected to be ensembles of applications and
analytics components, from both scale-up and scale-out models, at the same
time. To accelerate the time to science, application and storage developers each
focus on their own priorities.

Application developers and users focus on how much compute can they get
out of a machine. In very coarse, raw terms, compute is measured in FLOPS.
More memory can yield more localized computation yielding more FLOPS.
PMEM offers a way to get more memory per node offering greater potential
for more FLOPS at a cost more affordable than DRAM.

Storage developers are focused on IOPS and bandwidth. The IOPS show the
number of operations performed per second. Bandwidth is the raw data transfer
capability. PMEM offers high IOPS and bandwidth making it a seemingly ideal
storage technology. The drawback for PMEM, in the short term, may be the
memory bus rather than block-oriented storage interfaces requiring rethinking
storage software stacks. These conflicting desires between application and storage
developers prompts rethinking how technology is deployed on HPC machines.

While the persistence properties of flash storage and PMEM devices suggest
they are most ideally used as storage, this property may be the least interesting
device property. Using the devices as cheaper, higher capacity memory may make
persistence a penalty since erasure may require more than a reboot or a power
cycle. The benefit of expanding memory capacity may outweigh the storage
performance benefits. This paper explores these technologies and the impacts on
applications, storage, infrastructure management, and machine procurement.

Throughout the rest of the paper “memory” and “storage” are frequently
written with quotes. This is to emphasize that the devices or operating modes
referenced may be for a particular purpose, but it might not be the purpose the
manufacturer primarily intends the hardware to fit. This fluidity is the founda-
tion of new opportunities for research and development.

The rest of the paper is structured as follows. First, in Sect. 2, an evaluation of
devices typically classified as memory and how they work in this shifting land-
scape. In Sect. 3, is a discussion of the impacts new persistent storage devices
have impacted research and production storage as well as machine procurement.
Section 4 discusses the pertinent persistent memory characteristics that make this
technology unusually interesting. Next in Sect. 5 is a discussion of a hybrid machine
and the impacts of persistent memory. Finally in Sect. 6 conclusions are made.

2 The Shifting Memory Landscape

Modern compute memory started with registers and main memory. Then cache
was inserted close to the CPU to shorten the time to read/write with main
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memory. Ultimately, the caching facilities split into layers and separate caches
for data and instructions. This has proven crucial for compute performance given
the differences between external and internal clock rates for CPUs and the delay
when storing and retrieving data from main memory. Multi-core CPUs have
driven a need for larger and larger caches to keep the cores processing as much
as possible.

With the introduction of high bandwidth, on package memory, another layer
is inserted into the memory hierarchy. Figure 1 illustrates what a current memory
hierarchy looks like. By moving from left to right, the performance decreases and
the capacity increases. Also, the price per byte decreases moving left to right in
the figure.

Fig. 1. Memory Hierarchy

While the memory bus seems like an inappropriate item to list with the other
three entries, it represents the possibility of two different technologies deployed in
varying quantities. First are the traditional volatile DRAM devices. Alternatively
are the persistent memory devices. The possibilities of no devices of either or
both types are all viable models. In some cases, the memory bus outside the
CPU package may become optional.

With the arrival of the multi-core era with internal and external clock speed
differences already dominant, one might have asked, “why aren’t we doing on
package memory instead?” Unfortunately, the manufacturing process for a CPU
core is different from what is used to make DRAM. Requiring multiple processes
for a single chip is not feasible. Putting multiple “chiplets” into the package
was infeasible at the time as well. Instead, the next best option was to add
additional cores with the hope that the caches could keep them fed sufficiently
that processing performance is significantly better.

High-bandwidth, on package memory (HBM) products demonstrate that the
manufacturing issues related to additional on package memory have been solved.
Manufacturers are still in a profit taking phase making the technology expensive.
The additional challenges related to yield and bits per pin may limit the ultimate
potential driving the need for more off package memory.

Persistent memory offers a different option that is less expensive than DRAM
or HBM with nearly the performance of DRAM [12]. PMEM paired with HBM
may offer the right financial solution to accelerating compute workloads. Price,
performance, functionality, and usability all matter.
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2.1 How is “Memory” Used?

To best think about memory, think about what assumptions systems and appli-
cations developers make when thinking about a memory device and memory
function.

Consider a proto-typical scale-up HPC application, big physics, that applies
physics-based calculations across a large data structure. The normal communi-
cation patterns are less important than the data access and persistence patterns
employed.

Assumption 1: Data only Lives as Long as the Application. Application
developers work under the assumption that whatever is stored in memory will
be deleted automatically on application exit. Things like cleaning up dynami-
cally allocated data structures is unnecessary if the application is exiting since
the OS will reclaim those resources. This is done both out of laziness and for
performance. Cleaning up a large, complex data structure can noticeably delay
application exit when the memory free operations all invoke a system call to
return the freed resources.

Assumption 2: Knowledge for Understanding the Data Format is
Encoded in theApplication. With one known exception outlined below, appli-
cation developers seek to get the greatest cache efficiency for the greatest perfor-
mance. This requires packing data as tightly and efficiently as possible. Stated dif-
ferently, the application is coded such that it understands the tightly packed data
bits rather than the bits including any information about what follows.

Assumption 3: Writing and Reading Environment Identical. With
DRAM performance identical for writing and reading (assuming either both in
cache or all the way to main memory operations), optimizing for one over the other
is not considered when writing applications. Instead, a developer may optimize to
minimize the sum of both even if that skews writing or reading strongly.

Assumption 4: Writing/Reading is “Fast” Compared to Storage. Mem-
ory operations, fromboth amemory and a storage perspective, are far cheaper than
storage traditionally. Instead of using sub-optimal storage IO patterns, spending
some time manipulating memory pays off in significant IO performance improve-
ments. Given a choice, programmers will choose orders of magnitude more memory
operations than storage operations and achieve greater performance.

3 The Shifting Storage Landscape

Modern computing storage has employed disk and tape for decades. Improve-
ments in capacities and performance as well as innovations in storage software
and interconnect infrastructures have enabled growing storage systems to meet
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application needs. Gary Grider pointed out around 2015 that disk performance
was not keeping up with capacity making a situation where buying sufficient disk
to get the desired performance yielded an excess in capacity. In essence, in pro-
curements, buying adequate disk quantities based on bandwidth requirements
guaranteed capacity requirements were exceeded.

As part of Grider’s assertions about disk, solid state storage in the form of
NAND-flash SSDs offered far greater performance, but with far less capacity.
Purchasing, if buying SSDs instead of disks, switched to buying capacity and
getting bandwidth for free. Balancing these two technologies as proposed with
“burst buffers” [2] introduced storage software complexities, but offered perfor-
mance and capacity at a net lower cost. This kind of staging data in a fast
tier before moving to a disk tier goes back to at least 1996 [16] in data staging
research. Hierarchical storage certainly goes back decades further.

The price/performance/capacity balance that burst buffers addressed from a
hardware perspective is shifting again. QLC flash, particularly with 3D NAND,
moves the price for capacity of flash much closer to disk [9,13,15]. These advances
have already eliminated the 10K and 15K RPM HDDs and will continue to erode
the HDD market. Getting sufficient HDDs in parallel to offer the same perfor-
mance as flash reveals that the cost difference is far smaller than it might appear,
particularly when considering total cost of ownership. This shift cannot happen
overnight as manufacturing capacities for flash are far too small to wholesale
replace HDDs at this time, but the shift is continuing as more devices and pur-
chasers opt for flash over HDDs. Skeptics may look and be concerned about write
endurance for these devices. For a projected 5-year lifetime, these devices can
serve without replacement. Projections based on write volumes per day show
that in spite of the limited lifetimes, they will last as long as the compute sys-
tem for the specified usage [10]. Based on the workflow examples, devices with as
short as 0.1 drive writes per day could suit a 5-year lifetime offering substantial
performance and lower cost of ownership.

Figure 2 illustrates the storage hierarchy today. Note that like with the mem-
ory hierarchy, the memory bus is not strictly a storage device, but is a stand-in
for devices that can work on the memory bus at speeds reasonable for a “mem-
ory” device. Discussions of where burst buffers fit into this picture is more a
matter of where burst buffer software is deployed. With the node-local design
used on Summit [22] at Oak Ridge Leadership Computing Facility being one
design and centralized nodes as sold by Cray as their DataWarp [8] product, the
design of a burst buffer is more of a storage layer rather than a storage layer
using a particular technology or in a particular location. Ultimately, as the price
of higher performance storage devices drop for capacity, burst buffers will dis-
appear to be replaced by near-compute storage for medium-term data storage.
Data lakes as used by Internet scale companies are a reasonable model. Data
needs to be accessible faster than tape will use slower, but higher capacity disk
using technologies like shingled magnetic recording [1] and/or energy-assisted
magnetic recording (e.g.., HAMR and MAMR).
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Fig. 2. Storage hierarchy

3.1 How is “Storage” Used?

The example big physics application is still a good model to help think about
storage from the application developer’s perspective. In general, the application
developer uses storage to save a snapshot of their model periodically based on
the application progression. Because of how this data is later used, different
assumptions are made and the data is managed differently from the in memory
image.

Assumption 1: Data Lifetimes Exceed the Application’s Lifetime. Writ-
ing data to storage is expensive. Developers project some percentage of appli-
cation runtime and limit their data output to approximately hit those targets.
This offers an acceptable balance between compute progress and analysis capa-
bilities. Writing data more frequently will take too much time. Writing data less
frequently limits the ability to gain scientific insights. Finding this balance is not
an easy task and is generally a guess with innovations and adjustments made in
analysis trying to compensate if insufficient data can reasonably be saved. In all
cases, the intent is that some future analysis will take the data and process it
without the big physics application still running at the same time. Complicating
this balance is the need for resilience-related defensive output based on MTBF
for the system. This data may or may not be usable for analysis purposes. In
many cases, developers have significant overlap between analysis output contents
and defensive output contents.

Assumption 2: Knowledge to Understand Data Format and Types
Encoded with the Data. A key insight for this is the data consumption
by analysis applications. Using standard applications generally means the data
is stored in a standard format the application can read and then the analysis
operations can be performed. The implication of this is that the standard data
formats, such as HDF5 [6], netCDF [17], and ADIOS’ BP format [11] all encode
metadata with the data so that these data consumers can take an arbitrary
output and still process it without having to write custom data interpretation
code. This encoding metadata as part of the data is nearly unique to storage.
The secondary purpose of this formatting is to enable data to survive memory
layout changes in the application. When the application re-reads data, it will
know how to organize it in memory to suit the current application expectations.
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Assumption 3: Writing Architectural Assumptions may Not Hold
When Reading. While little-endian formats have almost exclusively taken
over as the dominant in memory image, standard storage formats cannot rely
on this unless it can be guaranteed that little-endian (or big-endian) formats are
the only format they will support. For memory, the compiler will generate code
that properly matches how the CPU manipulates data.

Assumption 4: Writing/Reading is “Slow” Compared to Memory.
Storage systems have historically relied on “slow” devices as motivation to do
things like data re-arrangement [20]. The performance differences made this
tradeoff worthwhile offering net better performance.

SSDs and NVMe devices have changed this picture forcing a rethinking of
IO libraries to avoid stealing too much performance for “optimizations” that do
not yield sufficient benefit.

4 Persistent Memory Characteristics

PMEM’s load/store access is the most important characteristic. It means that
conventional programming models for addressing memory can work directly with
PMEM devices with only slight modifications. These modifications are limited
to a change to the allocation such that a programmer can specify what kind of
memory to use and then the compiler being smart enough to generate proper
code to access PMEM vs. DRAM properly. This small change makes it extremely
simple for a programmer to adopt not just for the simple API, but also because
the programming model is what they are accustomed to already.

But for a storage system, is persistence the most important characteristic?
From the operational semantic contract storage APIs have with programmers,
it must be. But how does this affect HPC-related applications where multiple
nodes running a single task are standard?

Typical node-level storage issues remain with PMEM devices. Unless the
PMEM can be accessed while the node is offline, data access can be lost. While
centralizing storage was done to address reliability issues for storage devices, it
also serves to make data resilience easier to implement. No longer will a sin-
gle node going down affect data availability. Systems like Scalable Checkpoint
Restart (SCR) [14] offer a model for mitigating the risks of node local storage
while enjoying the performance benefits. However, SCR has yet to become a
standard tool on HPC systems nor has it been widely adopted by HPC applica-
tion in spite of the proven benefits. NVMe devices already can serve the niche of
high performance node local storage. The additional benefits vs. financial costs
may make PMEM adoption a difficult argument.

Given the conflicting benefits of either load/store access vs. persistence, how
should these devices be allocated and used?
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4.1 Considering PMEM (Scale-Up)

For scale-up machines using large quantities of thin nodes, the memory bus may
be empty and may not even have any sockets on the node board. This is one of
the “swim lanes” for expected exascale machines [18]. For these cases, the addi-
tional cost of the memory slots must also be considered. For fat node machines,
sufficient memory slots should exist that some of them could be dedicated to
PMEM devices lowering the up front costs.

In the presence of existing technology, PMEM still makes good sense. The
SATA bus used by most disks or SSDs today is too slow to be useful. The
interconnect to a different node may be as much as 10× faster. Even saturating
the SATA bus is not fast enough to make using it viable. NVMe devices can offer
performance beyond all but the newest interconnect while still offering more of a
traditional storage model with blocks as the primary storage unit. However the
additional costs of NVMe devices must be factored into the storage system cost
to justify their purchase. With storage being allocated, generally, something like
10% of the machine budget, price/performance trade-offs are important.

Referring back to Fig. 1 and Fig. 2, what devices are placed in the Memory
Bus block becomes an interesting question. PMEM is a strong candidate in
the presence of HBM since it can offer additional capacity at a cheaper cost.
However, the storage benefits are also strong. Given these conflicting use cases,
how should it be used?

5 The Hybrid Machine

Consider an exascale machine with expected workload mixes. For most cases,
the expectation is that an ensemble will run concurrently rather than a single
application occupying the whole machine at once. Today’s analysis components
are strongly incorporating scale-out tools to augment existing functionality. With
a scale-up application running in concert with scale-out analysis tools, the best
hardware configuration for each component varies.

5.1 Consider Persistent Memory

Persistent memory’s characteristics offer a way to address both application needs
of additional memory as well as storage’s needs of a fast, persistent store. Given
this dichotomy, the following questions are relevant.

Question 1: Is It Slow Memory or Fast Storage? For the nodes hosting
the application, using PMEM as slow memory makes the most sense. However,
for the nodes hosting analysis components, having high capacity, fast storage
may make more sense.
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Question 2: Does Persistence Matter? One of the questions the storage
community wrestled with when SSDs became affordable enough to deploy on
HPC machines (as part of the storage hierarchy) was the importance of per-
sistence. Seeing these as storage devices, many people considered persistence a
key characteristic. For those working on data staging, they saw something that
was probably better as a storage device. Some applications people, particularly
those that already were using out of core computations, SSDs offered fast storage
(or very slow memory) to accelerate their applications. For these applications
people, the persistence was a detriment. Because SSDs have a required erase
operation before a block can be reused, unless it is an enterprise-class device
with sufficient over provisioning, writing slows to half speed over time. PMEM
devices avoid this cost.

For Summit and Sierra, the amount of writes before falling off this cliff is
larger than the vast majority applications need to write in a write phase and is
not an issue. We expect apps to write ≤15% of GPU memory. The devices can
absorb this before falling off of the write cliff.

Question 3: If it is Across a Fast Interconnect, Does that Matter? For
storage operations, the device location is unimportant. HPC storage software is
largely written assuming data will move from the source node to some other loca-
tion for persistence. It may migrate through multiple locations, but ultimately, it
does migrate off node. For memory, the interconnect is still slow. The GenZ [4]
architecture assumes distributed memory across the interconnect factoring in
slow memory into the hardware model. In this case, the location and whether
or not it is a memory or a storage device is irrelevant. Other similar approaches
include CAPI/OpenCAPI (Open Coherent Accelerator Processor Interface) [19],
CCIX (Cache Coherent Interconnect for Accelerators) [3], and CXL (Compute
Express Link) [21].

Question 4: Does it Have to be Natively Byte Addressable? Consider
cache lines vs. blocks or pages. Isn’t everything byte addressable through a suit-
able API? Memory operations cause a cache line to be loaded into the cache
or a cache line to be flushed back to main memory. Storage has a native block-
sized access granularity, but still offers byte-addressibility through APIs like the
standard C open/read/write/close POSIX calls.

In short, whether or not the device offers byte-level addressibility is not a
valid question anymore. Instead, the question is the cost of fine grained access
compared to the native access granularity. PMEM, as it lives on the memory bus,
will offer cache line sized access granularity. While this is smaller than typical
512-byte or larger blocks, it is sufficient to deal with memory access performance
with standard DRAM. This makes the native access granularity uninteresting
as a defining characteristic.
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5.2 Pop Quiz! Memory or Storage?

Organizing Data for Highest Density? No matter the kind of device the
data is stored on, this is a traditional memory function. This is even true for
some disk-based operations.

Organizing Data in an Archive/Long-Term Reuse Format? Typically,
this is a storage characteristic. Recall that HDF5, netCDF, and ADIOS BP files
all use this technique to make data easily accessible for arbitrary future data
users.

Application Writing Checkpoint to Disk Using a raw Memory Dump?
A checkpoint-restart output that is a strict memory dump rather than annotat-
ing the data is treating the storage device as memory by effectively doing a
memory copy through an appropriate API.

There is one notable production exception: The European Center for Medium
Range Weather Forecasting (ECMWF) changed their models to always keep data
in a network transmission format [7]. That means there is less data density for
compute and the storage format requires a custom to ECMWF interface to inter-
pret the written format. For them, this simplification and de-optimization has
served to make their code easier to write and the data easier to consume. A
programmer only needs to read the block from storage and send that directly
down the network. Also, computation needs only read the block and then can
compute on it directly. The additional coding overheads and slowdown in mem-
ory access due to less data density was seen as less important than simplifying
the data management environment. Further, the performance penalties have not
been severe enough to justify rethinking this approach with the center continuing
to meet forecast generation goals without difficulty.

5.3 What Do Apps People See?

Considering the above information, clearly, most scale-up applications people see
PMEM as a slow memory device that can offer them additional compute memory
to supplement the limited HBM deployed on the machines. The persistence is
not something that is relevant at all. The benefit is that PMEM offers higher
performance memory access than anything across the interconnect. Further, they
get the convenient CPU load/store programming model they are accustomed to
using eliminating the need to learn a new API to use the new hardware.

The key opportunity afforded by PMEM is the feasibility of out-of-core com-
putations for applications that may have chosen to spread to other nodes histor-
ically. They can get additional memory capacity on a single node avoiding the
interconnect communication overheads. Until HBM becomes inexpensive enough
to eliminate the need for any out of package memory-like device, this model
makes marginally large enough HBM a workable model. A careful OS model
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could place nearly all of the OS code and modules into the PMEM space open-
ing more HBM for the computation.

Since out-of-core computing is a well known compute model, there is only a
small learning curve. In simplistic terms, a programmer just needs to add a loop
to move memory blocks from HBM to PMEM and vice versa after computation
rounds.

5.4 What Do Storage People See?

Node-local storage devices, such as NVMe, have demonstrated the value of hav-
ing persistent storage close to the compute. The performance when writing and
reading to these devices enables meeting machine forward progress requirements
with less difficulty than larger interconnects and higher bandwidth on shared
storage. In this environment, PMEM is clearly fast storage. Systems like SCR [14]
offer an existing, proven approach easily adapted to use PMEM rather than other
node-local storage devices.

Opportunity: Can extend remote storage onto the node Auto-migrate off
node for better resilience over time

5.5 Who Wins?

Winning the right to define how a type of technology is not really the goal.
Instead, consider why the big machines exist and where PMEM can offer the
most benefit. In general, we buy machines for computation. Whatever best sup-
ports computation throughput is what we will use. In the case of PMEM, the
typical memory-oriented API offers a convenient, familiar programming model
that does not impose any special requirements.

But there are other considerations to keep in mind. For the proposed exas-
cale machine with an ensemble of application and analysis components running
simultaneously, making PMEM into a memory device is not as easy a decision.
For data staging between ensemble components, PMEM offers a convenient hard-
ware interface with additional persistence guarantees. For analysis components
that favor close storage, PMEM offers a convenient technology to address those
needs. But this really points out that depending on the particular code use case,
how PMEM is best used varies.

6 Memory vs. Storage: Bottom Line

Overall, it is clear that data lifetimes are not a particularly interesting difference.
Instead, the performance can offer advantages to both memory operations or
storage operations, as needed. With the endian-ness issues mostly standardized
now, the need to encode data to account for different endian-ness is nearly gone.
The performance differences between the fastest and slowest part of either the
memory or storage tier is still vast. (Registers vs. PMEM or PMEM vs. disk or
even tape). That means that PMEM for memory uses is unlikely to be suitable
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as a primary memory for compute while disk is no longer viable as the primary
data repository for persistent storage.

Overall, data encoding might be the only meaningful difference between data
intended for memory or storage. However, keep in mind that pesky ECMWF
example eliminates even this consideration.

6.1 What Do We Need to Do?

For PMEM, if memcpy is the desired IO API, what primitives do we need to
implement this effectively? To address the need for long-term stored bytes to
be interpretable in the future, it is all but certain that some data encoding
or annotation is required. Some new implementation of memcpy that offers the
encoding and decoding would be ideal.

When using a machine with both HBM and PMEM, how does a programmer
know if something is in HBM or PMEM? How much do they care? In reality, it
is likely the programmer will use particular variables solely with one type or the
other to limit confusion. However, there is the still the data swap operation. One
solution to the data swapping is something like Kokkos [5]. This offers a simple
programming model that makes explicit operations to transition data from one
kind of media or storage location to another. Should those two logical location
be in a single device, Kokkos defaults to a no-op. This kind of approach would
be required.

For storage-oriented block devices and APIs that assume this hardware imple-
mentation, what changes will be made to take into account PMEM, if any? At
a raw level, simply changing the block movement from read/write operations
to memcpy operations may both be the quick fix as well as a viable long term
solution.

Most importantly is the question of when will there be broad CPU support
for PMEM beyond the few Intel parts? How long until AMD, Power, and ARM
support PMEM. Is RISC-V possible as well? This will require market demand
and good programming tools to drive usage and therefore demand.

One challenge storage developers encountered about a decade after they
started using asynchronous IO to accelerate data movement while carefully
avoiding application communication patterns was asynchronous collectives. The
application writers discovered that there were times during the application exe-
cution where inter-node data movement could occur without disturbing the
application’s communication. Unfortunately, this was precisely the same times
that the storage developers had used to perform asynchronous IO operations.
With the adoption of asynchronous collectives, does this mean that all asyn-
chronous operations simply become synchronous again because there is insuffi-
cient time to allow all asynchronous operations to complete during these inter-
connect quiet phases? Finding the right balance when storage wants to move
10s of GB and applications want to move a few MB, but both trying to do it
asynchronously, is an open question.
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6.2 Why Do We Care?

In summary, PMEM offers an opportunity to have a hybrid machine with devices
that can serve as either slow memory or as fast, node local storage. With resource
management systems updated to acknowledge these devices and change their
deployment dynamically, we can have machines that suit both scale out memory
intensive operations as well as scale up read intensive applications at the same
time. HBM is still a bit too expensive, but 100% on package is the goal when we
can afford it. Capacity limitations due to physical constraints may be a stronger
limiting factor than cost in the foreseeable future.

A potentially surprising outcome of this analysis is that on node NVMe
for thin nodes is too heavyweight. This might also be true for fat nodes. The
additional performance and convenient interface to PMEM devices may do to
NVMe devices what SSDs did to disks.

Until we get widespread support beyond just Intel, this is challenging to
achieve. Unfortunately, Intel chose a confusing name by reusing Optane for
PMEM effectively hiding the part from potential customers. With the big 5 cloud
companies driving hardware development choices far more than any supercom-
puting application today, it may prove challenging to impossible for PMEM to
get the market inroads necessary for wide-spread support. To make this work,
showing the benefits for cloud workloads would help tremendously.

JEDEC ratified NVDIMM-P that will provide mixed DRAM/Flash DIMMs
and will work with any DDR-5-capable CPU.

Intel’s Optane is an Intel-specific NVDIMM-T spec.
NVDIMM-N exists today but is DRAM that backs up to on-board Flash

upon unscheduled power-off and does not expose the backing Flash.
NVDIMM-F is defined (byte-addressable Flash) but potential products have

not been announced.
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Abstract. Several recent workshops conducted by the DOE Advanced
Scientific Computing Research program have established the fact that
the complexity of developing applications and executing them on high-
performance computing (HPC) systems is rising at a rate which will
make it nearly impossible to continue to achieve higher levels of perfor-
mance and scalability. Absent an alternative approach to managing this
ever-growing complexity, HPC systems will become increasingly difficult
to use. A more holistic approach to designing and developing applica-
tions and managing system resources is required. This paper outlines a
research strategy for managing the increasing the complexity by provid-
ing the programming environment, software stack, and hardware capa-
bilities needed for autonomous resource management of HPC systems.
Developing portable applications for a variety of HPC systems of vary-
ing scale requires a paradigm shift from the current approach, where
applications are painstakingly mapped to individual machine resources,
to an approach where machine resources are automatically mapped and
optimized to applications as they execute. Achieving such automated
resource management for HPC systems is a daunting challenge that
requires significant sustained investment in exploring new approaches
and novel capabilities in software and hardware that span the spec-
trum from programming systems to device-level mechanisms. This paper
provides an overview of the functionality needed to enable autonomous
resource management and optimization and describes the components
currently being explored at Sandia National Laboratories to help sup-
port this capability.
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1 Introduction

Leadership-class high-performance computing (HPC) systems have become too
complex to manage every critical resource across the entire infrastructure. Map-
ping an application to the resources in a system has become both inefficient
and manual, requiring locality management and resource utilization to be done
by hand. Processes are manually assigned to cores explicitly by user pinning,
and this assignment remains unchanged throughout the lifetime of the job exe-
cution. Discovering a reasonable mapping is usually tedious process, typically
done through trial-and-error, with no understanding of whether the result is
optimal. This situation will worsen as future heterogeneous systems with com-
plex node types and a wider variety of system architectures become a reality in
a post-Moore era.

Mapping an application to the resources of an HPC machine must be done
in an automated fashion that lessens the burden on the application program-
mer, employing many aspects of autonomous computing [21,26]. In order for
autonomous resource management and optimization to be most effective, a holis-
tic approach that spans the entire software stack must be employed. For example,
a programming model and system that does not allow for dynamic adaptivity
to the underlying resources will not be able to take full advantage of automated
resource management. Likewise, asynchronous task-based programming systems
cannot be fully exploited on systems where resources are fixed and unable to
adapt.

Several key capabilities are required in order to enable autonomous resource
management. First, resources must be dynamically discovered and changes to
resources must be realized in an event-driven fashion. The system must develop
an understanding of how best to use the available resources. This capability
involves several aspects, including measuring how resources are being used,
developing cost models that accurately reflect the overheads, providing flex-
ible resource management policies, and determining appropriate responses to
constantly changing resource needs. The current approach to doing offline per-
formance analysis and optimization needs to be automated and remove the appli-
cation programmer from the process as much as possible.

Developing these capabilities is a daunting task that will require significant
sustained investment in exploring new approaches and novel capabilities in soft-
ware and hardware. This white paper describes some of the components of a
software stack being explored at Sandia that are necessary, but not sufficient,
to enable autonomous resource management and optimization for HPC systems.
Our intent is to use these components as research vehicles to support collabora-
tion within the broader HPC research community to take steps toward enabling
automated resource management and optimization of resources for HPC appli-
cations and systems.
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2 Autonomous Operating System Design

Current leadership-class HPC systems are made up of a collection of individual
servers each running a local operating system (OS) such as Linux, with a given
server’s OS having little or no particular insight into what the other servers in the
system are doing. Given the primary purpose of these systems is to run tightly-
coupled parallel applications across large fractions of the distributed servers, this
situation is unfortunate. As a result of the lack of coordination and global view
at the OS level and the increase in system complexity, many users have come
to expect significant and increasing run-to-run variability and unexplained job
failures. While this is an inherent problem of our current capabilities rather than
an effect of heterogeneity, increasing heterogeneity will only exacerbate these
problems as uncoordinated resource allocation decisions across nodes can lead to
differing performance. Work in several areas related to global-view autonomous
operating systems can help address these issues and lead to a more efficient and
productive HPC computing environment.

Given the current state, we have identified three areas of focus in OS design
that are critical for the efficiency of HPC in a heterogeneous environment.
These areas includes lightweight node-OS architecture, an autonomous global-
OS design, and resource allocation usability.

2.1 Lightweight Node OS

First, lightweight kernels are needed to enable predictable and repeatable
resource allocation across nodes. A prime example is the ability to create an
identical virtual-to-physical address mapping across nodes, which can help alle-
viate noise and variability due to memory management. This approach becomes
more important as hierarchical byte-addressable memory subsystems take hold
within the HPC node architectures, leading to nondeterministic caching and
memory latency scenarios.

Today it is commonplace for a highly-tuned HPC application to be unable
to take full advantage of the hardware concurrently on several leadership-class
supercomputers. This situation is due to both the limitations of parallelism
Amdahl’s law, but also due to the additional heterogeneity found in emerg-
ing node architectures, and the ability for applications individually utilize each
component. As node-level heterogeneity becomes evermore prevalent, this inef-
ficiency will only increase. One important aspect of lightweight kernels that can
help alleviate this hardware inefficiency is the ability to provide additional iso-
lation between individual hardware resources, be it cores, memory, accelerators,
network devices, or other I/O operations. This isolation would allow for nodes
to be co-scheduled and jobs packed more efficiently by running dissimilar tasks,
part of different workflow execution mechanisms, entirely in isolation. While
this scenario of job packing has become commonplace in the cloud and industry,
such mechanisms introduce significant interference that is unacceptable to the
performance and predictability of our HPC applications. With efficient resource
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specialization provided by a lightweight OS, many of these challenges of perfor-
mance isolation could be improved.

2.2 Global OS

Second, global system monitoring is needed to gather a real-time view of system
operation, including system thermals, power usage, network utilization, and error
events such as memory and network failures. On today’s leadership-class HPC
systems, when a job runs slowly it is often difficult to determine what went wrong
and where inefficiencies are. Frustratingly, the information needed to explain the
failure is often present deep within the system but only accessible to root-level
system administrators. While significant gains can be made in system engineering
to help address these symptoms, several open research questions remain in how
to enable mult-resolution system monitoring to support both real-time analysis
of system operation and detailed analysis and optimization of longer-time scale
behavior.

Sandia has developed its Lightweight Distributed Metric Service (LDMS) [1]
for high fidelity monitoring of large-scale HPC resources. In conjunction with
this work, Sandia has performed extensive work in the area of global state and
on-the-fly analysis of system and sub-system resource utilization, including use
of windowed resource utilization information to trigger changes in application
behavior to more closely match available resources given current contention for
shared resources (e.g., storage and network) [7]. This work is extensible to the
shared node resource use case where tasks could be mapped onto available com-
pute node resources that are in a topologically advantageous position given cur-
rent and/or anticipated communication needs. Monitored system state data,
currently comprising greater than ten terabytes per day on some of the largest
HPC systems, lends itself to Machine Learning (ML) and Artificial Intelligence
(AI) techniques to identify the most significant data and their effects on per-
formance. Sandia has promising results in using such techniques for runtime
detection of network congestion [17] and identification of abnormal application
behavior including root-cause analysis [33].

Recent work on using databases at the OS level is a promising approach
for managing global state in a consistent way that can be queried and updated
with powerful database query languages [19]. The content and fidelity of data
being stored to such a database must be carefully tuned to provide the appro-
priate amount of detail for making both real-time and long-term decisions on
performance and failures without introducing unnecessary analysis complexity
or latency. We must also design new mechanisms and algorithms to both analyze
data on a component and sub-system level and act on resultant decisions at a
global level.

Once analysis and actionable decisions can be made efficiently on HPC sys-
tems, a fully scoped global operating system layer is needed to coordinate across
a large and diverse infrastructure created by a heterogeneous HPC system. While
several distributed OSs have been proposed, such systems are not in use today.
This situation is largely due to the lack of an appropriate design that fits the
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problem without additional overhead. Instead, a middle ground in design is
needed where a higher-level entity than a node is aware of the resource availabil-
ity and allocation state across nodes, so that more intelligent and coordinated
decisions can be made.

This global OS has several design characteristics that are important for
autonomous resource management of large-scale heterogeneous systems. Tra-
ditional schedules take a strict approach to scope, either owning the total global
system explicitly as with batch job schedulers like SLURM, PBSPro, or LSF,
or they take an implicit yet localized and unmanaged resource management
through the OS itself. Instead, a more comprehensive and structured scheduling
system is needed, whereby loose resource management decisions can be made
at a higher level, whereby it can be refined as it is passed down to group and
eventually a node-level resource manager. In this mechanism, the global OS
can make broad strokes for system allocation with predictable performance, and
those decisions can be refined and implemented in greater details at the lowest
levels. For instance, if a local lightweight kernel were able to interact with and
interpret a global scheduling decision for a given application, then core pinning
and memory management can be done efficiently by the OS-level best able to
implement it autonomously.

While global-to-local resource management refinements can happen
autonomously, a similar feedback mechanism must also be possible. For instance,
if a localized node OS detects a fault with a device that is necessary for the effi-
cient completion of a task (e.g., an accelerator), then that information needs to
be quickly sent upstream to a group or global viewpoint. With such information
at hand, the global OS can autonomously act to augment a job’s capabilities by
allocating resources elsewhere and de-provision the specific node with a fault.
Furthermore, this de-provisioning could happen only towards jobs that are actu-
ally impacted by the fault itself. For instance, a global scheduling decision could
be made to still allocate a CPU-bound analysis task that doesn’t require a GPU
on a node that has a GPU fault, effectively increasing overall system throughput.

2.3 Resource Management Usability

With the additional capabilities of autonomous hierarchical scheduling of hetero-
geneous resources comes the additional requirement of enabling capabilities for
both users and applications. Today, this is often more than the number of cores,
the expected runtime, and the amount of memory to be utilized. Instead, users
need to include specific details, such as which accelerators to use, how to pin
the cores, and how to organize the memory caching mechanisms for hierarchical
memory subsystems. Furthermore, applications have to very carefully manage
the use of system storage. This explicit mapping of resources culminates in long
and heroic porting processes for HPC applications moving to new resources to
manually manage scale and efficiency. Such application placement is currently
static and unable to adapt to failures or slowdowns during runtime.

With a an autonomous global OS resource management policy, users may
no longer be required to specify the full extent of their resource requirements.
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Instead, users could provide a deadline, their full software ecosystem to be exe-
cuted, and a list of hints to the autonomous resource management system. It
then becomes the job of the system to efficiently and autonomously allocate and
manage system resources to meet the specific requirements.

While this hands-off approach for users may be exceeding attractive to more
adaptive AMT runtime models like Darma, Legion, Parallex HPX-5, or others
[3,18,35], supporting traditional bulk synchronous parallel models, specifically
MPI, should also be supported. This approach will avoid the need for additional
porting effort of legacy applications while providing additional features to users
and applications capable of using them.

Another key aspect of autonomous resource management usability is the
ability to specify a runnable software environment as a single entity. While this
functionality is available today to some extent in HPC with containers [36] and
virtual machines [22], such usage is currently explicit and not well integrated into
scheduling decisions. Mechanisms are still needed for the usage of containerized
HPC to be transfered and managed implicitly within an autonomous system.
Furthermore, additional capabilities and library standardization is required to
make container usage ubiquitous to users. For instance, users should only need to
reference the desired container image, and the global OS will handle performance
considerations, device utilization, and efficient storage mechanisms at runtime.

3 Autonomous Allocation of Lightweight Threads

The hybrid programming needed to exploit available hardware parallelism on
current node architectures typically combines message passing with either heavy-
weight threading (e.g., OpenMP over pthreads) on manycore CPUs or single-
instruction multiple-thread execution (e.g., Nvidia CUDA) on GPUs. As com-
pute units on each node increase and diversify, issues of load balancing and
resource management become more important. It is precisely these issues that
require a more flexible approach to threading, facilitated by programming mod-
els like the tasking model introduced in OpenMP 3 and extended to accelera-
tor offload in later versions of OpenMP. This task-based approach focuses the
application developer’s effort on decomposition of their program into a set of
functional tasks and identifying dependencies between the tasks. The thread-
ing runtime system takes on the burden of scheduling the tasks as lightweight
threads to make optimal use of the available execution resources.

Coupling full-empty bit synchronization made the Tera MTA/Cray XMT
architecture a particularly useful tool for applications with irregular data
accesses such as graph processing. Such applications are now a key part of data-
driven scientific computing, and the Sandia Qthreads runtime library [34] for
lightweight threading implements full-empty bit synchronization in software to
support workloads in that space. Qthreads also serves as the on-node tasking
layer for Cray’s implementation of its Chapel programming language [8], which
aims to advance parallel programming productivity beyond the constraints of
legacy programming languages like Fortran and C++. In contrast, Sandia’s
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Kokkos [10] and Darma [20] are performance portability libraries for C++ pro-
grammers targeting on-node parallelism and inter-nodes asynchronous multitask
(AMT) parallelism, respectively. While originally Kokkos only offered data par-
allel execution patterns, these are now supplemented by the new task-DAG pat-
tern. Data parallelism within the tasks is translated into efficient OpenMP loops
and CUDA kernels. Darma maps user-defined tasks onto one of several AMT
frameworks or virtual transports (VT).

The key challenge for threading runtime systems is to make optimal schedul-
ing decisions in increasingly heterogeneous node environments. The scheduling
decisions must determine when and where to execute tasks to maximize spatial
and temporal locality among related tasks while also maintaining load balance.
Promising approaches have included user annotations to convey information to
the runtime and profiling based on performance counters. The ultimate solution
likely comprises online learning techniques to adaptively adjust task scheduling
for the particular combination of workload and available resources at execution
time.

4 Autonomous Allocation of Network Resources

Current networks have a variety of hardware features that enable allocation,
sharing and prioritization of resources on a node and at the network switch.
One of the major capabilities is assigning service levels to traffic to prioritize
some traffic types or even specific traffic streams over those of other jobs on the
system [15]. For example, at a high level, it is possible to prioritize MPI traffic
over a network versus I/O traffic or other application types. It is also possible
to prioritize certain types of MPI traffic over other MPI traffic, like prioritiz-
ing collectives over large point to point transfers to guarantee good latency for
collectives.

Autonomous allocation of network resources is a difficult problem as current
generation communication APIs like MPI and PGAS implementations typically
attempt to claim ownership of all node-side networking resources at initializa-
tion time from underlying network interfaces [2]. Negotiating between multiple
communication libraries on a single node, or multiple jobs using the same com-
munication library is difficult as it is not clear what resources will be needed
and when. Delayed requests for network resources can cause significant delays
for the operations that need additional resources on the fly. This situation leads
to performance variation that is observable by users. A better solution would
be to anticipate network resource needs and pre-allocate negotiated resources
only when they are needed by an application. A first step in this direction is
the prediction of resource needs that leads to application length allocations of
these resources. Returning resources to a common pool is possible, but predict-
ing when such resources should be released is an additional challenge that must
be addressed.

Sandia is in a unique position to address these challenges as it currently has
projects underway that can help address some of the fundamental reasons behind
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the current motivation to register resources in a greedy manner. One of these
solutions is to approach the underlying network interfaces and operation in a
more structured and receiver-side focused manner. By having receiver-side man-
agement of data placement and abstracting sender-side data placement inter-
faces, resources can be better managed without unnecessary resource subscrip-
tion. For example, in current systems for a direct memory placement interface
like Remote Direct Memory Access (RDMA), the sender-side must request that
the receiver allocate pinned physical memory and send the physical address of
that memory back to the sender before data can be sent. This approach requires
allocating resources on the receiver-side with no guarantees as to when or even if
those resources will be used by the sender. Allocating these resources as close as
possible to when they will be used and allowing the receiver more flexibility in
allocating and deallocating said resources is the key to efficiency. An autonomous
solution to this allocation is possible both from a centralized arbiter for a system
as well as a locally managed autonomous allocation scheme.

5 Autonomous Allocation of Storage Resources

Extreme scale capability platforms are enabling a second operating mode.
Instead of a single, large-scale application run, a collection of cooperating compo-
nents, each optimized to use specific hardware and programming approaches, will
run in concert to accomplish the compute tasks. This data flow model requires
specific capabilities to best enable this processing model. Workflows, in general,
need the same kinds of infrastructure to offer the kinds of functionality both
users and the science demand.

First, each of these components have particular processing cycles that are
almost certainly not identical to their upstream and downstream components.
To deal with this processing mismatch, data must be effectively staged between
components. Existing data staging work done by Sandia and others has shown
how, with dedicated resources, data staging operations can enable online pro-
cessing rather than requiring using persistent storage for the staging location.
Existing work as focused on the challenges of disk-based storage with the inher-
ent seek and rotational latencies as well as low bandwidth per device when com-
pared to the interconnect ingress. Modern storage systems are using solid state
devices deployed such that the interconnect is the slowest part of the path from
compute to storage. This shift allows rethinking how to best use these resources
to address workflow requirements. While this is true, the solid state storage is
also being deployed in smaller capacities right now leading to the inability to use
this storage for data staging as much as desired. New approaches that take into
account the current and future interconnect performance, various levels of the
memory/storage hierarchy, and cost/capacity/concurrency must be considered.

Second, in addition to just determining how to use the various kinds of stor-
age devices in various locations within the machine, effectively sharing these
resources is crucial to effective platform usage. Currently, storage resources are
largely unmanaged. Burst buffer resources are managed in some resource man-
agers, but the allocation is not taking into account potential oversubscription
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and how to interleave simultaneous users. Leveraging Sandia’s experience in
storage systems and data staging (cite) gives us a strong position from which to
investigate how to best address this problem. An additional wrinkle that may
be a problem with this idea as well is that solid state storage, unlike disk, has a
cost associated with erasing. With disk, erases happen while writing for no addi-
tional cost. For flash, an erase costs as much as a write and is required before
overwriting a dirty block or page. While enterprise-class devices offer additional
resources to try to manage this issue, cheaper consumer grade devices do not
making it into a universal problem. Offering a way to use cheaper components
on future platforms can reduce costs allowing limited budgets be spent on more
important resources.

Third, data is not all created equal and is not all of the same value. For
example, an extra checkpoint output is unnecessary and can be eliminated. Fur-
ther, looking at a double precision floating point number, the last several digits
of the exponent or mantisa contribute in only a tiny way, such as no more than
1/210 of the actual value. While this tiny contribution may be important for final
analysis, it is unimportant for a first pass data exploration phase. By splitting
data such that only the most important half of a double precision floating point
value is stored together, data density can be improved with a near trivial loss in
precision that only affects the analysis while the lower precision pieces are the
only part read. Instead, if we can address this kind of data priority or utility
more effectively, we can better address how to most effectively use smaller, more
expensive storage resources. Sandia’s work on the ASCR SIRIUS SSIO project
was a first step towards incorporating these features into storage management.

Finally, long term data management is also a consideration. We need to
determine how to best annotate and track data as it is moved to the archive.
While we currently manage files using a standard POSIX namespace, we do not
have adequate tools and support to do simple queries, such as, “what files are
related to project B61?” Additional, richer questions, such as “what simulation
runs from CTH during 2012 experienced crumbling?” are completely impossible.
This latter query is more interesting in that it is looking at the data features
themselves to better select what data is desired for retrieval. Additional efforts
to explore how to not only tag and manage data, but also to deal with queries
for things related to data contents are woefully inadequate. Sandia’s current
EMPRESS system (cite) is a good first step towards addressing this long term
data use problem. Additional efforts to build an appropriate system are des-
perately needed. Existing tools and efforts by others have all proven to have
significant flaws making those solutions incapable of addressing the needs that
Sandia and other labs have.

6 Autonomous Allocation of Power and Energy

Power consumption of future supercomputing systems is expected to be a major
challenge. Contracts on power usage with utilities typically have bounds placed
upon them that incur significant penalties when power consumption lies outside
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of an agreed upon power band. As such, the allocation of resources of a system
must also take into account a power profile. Without an autonomous allocation
of resources, maintaining contract compliant power bounds is both difficult and
requires a significant amount of person effort in order to keep the system running
well while also obeying power requirements.

Autonomous control of power consumption on a system wide basis is not yet
a feature on large systems, but the required building blocks for such a system
are close to completion. First, we have portable power control and monitoring
APIs like Power API [14], a community initiative that Sandia initiated. Power-
capping mechanisms exist on many current-generation supercomputers, but they
are based on a node- or job-level solution that has no centralized allocation mech-
anism. Individual jobs may be power capped today, but the management of the
system as a whole for power capping is not current practice and such allocation
schemes have not been developed. Before autonomous control can be utilized,
strategies for allocating power caps on systems must be further refined from the
current state-of-the-art from the research community. As job-level mechanisms
exist, this is an optimization problem similar to those approached by the real-
time computing scheduling research community and such work can be leveraged
for solutions in the power consumption allocation solution area.

A very challenging, but also potentially groundbreaking approach, is to pre-
dict future power usage on supercomputers. This approach has a potential to
significantly reduce operating costs with power utilities if such predictions can
be accurate and provide several hours worth of lead time. Prediction is a follow-
on activity from autonomous allocation as the autonomous system can make
decisions at a known speed and can schedule jobs on the system in a consistent
manner versus having system administrators trying to manage overall power
usage. This situation means that the autonomous system is already making
some predictions about individual job usage and therefore it should be possible
to extend this mechanism to the system as a whole. There is a prime opportu-
nity for machine learning to be utilized in observing and predicting power usage
based on a history of many jobs worth of power measurements. In addition, an
autonomous system should also be capable of adjusting job-level power caps to
ensure the highest level of science output from the system within the required
power bounds.

7 Autonomous Management of Resilience

Studies have shown that hardware faults are commonplace on current HPC
systems [4,9,11,16,23–25,27–32]. As HPC systems approach exascale, increases
in component count and complexity are projected to lead to significantly more
frequent failures. As a result, efficient resilience mechanisms will continue to be
an important on next-generation systems.

In addition to increases in size and complexity, current projections also
suggest that future systems will be more heterogeneous than current systems.
Advances in GPUs, memory devices (e.g., high-bandwidth memory, NVDIMMs),
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and storage (e.g., solid-state drives) mean that the challenge of efficiently config-
uring resilience mechanisms will be significantly more challenging. The develop-
ment of autonomous services that manage resilience mechanisms has the poten-
tial to significantly reduce the burden on application developers and to improve
system utilization by reducing time redoing work lost to failures.

Historically, resilience on extreme-scale HPC systems has been addressed
with two mechanisms: Error Correcting Codes (ECC) and coordinated Check-
point/Restart (CR). ECCs detect and correct errors in memory by adding parity
symbols to data stored in memory. Each time the contents of a memory location
is read, the ECC is used to determine whether corruption has occurred. CR
reduces the amount of work that an application loses when a failure occurs. The
basic idea behind CR is for the system to periodically (with or without appli-
cation involvement) save its current state to persistent storage. When a failure
occurs, application processes roll back to the last valid checkpoint and resume
their computation from that point. Although coordinated CR offers very strong
guarantees of failure recovery, writing checkpoints and restarting after a failure
are expensive operations.

7.1 Failure Prediction

Correctly configuring the interval between checkpoints is a significant challenge
for HPC users. They may not always have access to the necessary data or knowl-
edge to be able to properly determine how frequently to checkpoint their appli-
cation. Moreover, determining the optimal checkpoint interval depends on the
probability of an error occurring in the future, which may be difficult to deter-
mine. Failure probabilities can only be established retrospectively; there is no
way to definitively establish the probability density function for errors on a run-
ning system. As a result, users frequently rely on their intuition to establish a
“reasonable” interval.

Autonomous management of checkpoint/restart has the potential to reduce
the burden on users and to improve overall system utilization. For example, to
mitigate the impact of potentially imprecise checkpoint intervals an autonomous
system can leverage existing research on failure prediction, see e.g., [5,12], to
proactively take checkpoints or migrate processes to a spare node when failures
are imminent.

Sandia has performed extensive work in the areas of HPC log analysis in
conjunction with system wide, high fidelity, component and sub-system state
monitoring [6]. Analysis of system and scheduler logs in conjunction with global
system monitoring data can enable early detection of problems and more accu-
rate characterization of probability distributions of future errors. By leveraging
detailed failure data, an autonomous system can potentially adjust the configu-
ration of resilience mechanisms to improve system utilization.
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7.2 Scheduling Resilience Activities

Obtaining efficient system utilization for failure mitigation methods requires
mechanisms that are well-tuned to the target application’s programming
model, failure rates and global synchronization characterization. For example,
combining uncoordinated checkpointing with bulk-synchronous parallel (BSP)
applications can significantly increase the application’s time-to-solution [13].
Autonomous management of resilience activities (e.g., taking a checkpoint) has
the potential to increase system utilization by scheduling resilience activities to
minimize the application performance impact based on ever-changing system
and application input state.

7.3 Heterogeneous Architectures

Different hardware components exhibit different resilience characteristics, which
may change over time, and may require different strategies for mitigating these
errors. For example, CPUs have a long history of integrating powerful error
detection and correction features while GPUs have traditionally provided signif-
icantly less protection. As HPC systems become more heterogeneous, the task of
managing resilience becomes increasingly challenging for users. An autonomous
systems that is tightly integrated with the OS/runtime can reduce the burden on
users and make informed resilience decisions based on the current mix of system
resources that are currently being used and age/wear of the current system.

7.4 Programming Models

Traditionally, HPC systems have been used to run BSP applications. However,
new programming models, e.g., AMTs, are growing in importance. The resilience
implications of these programming models can be very different. Managing the
differences between these programming models autonomously would remove this
burden on users and allow them to focus on their scientific simulation rather than
requiring the considerable expertise needed to ensure application progress in the
current failure state of the system.

8 Conclusion

This paper has described software stack components and capabilities currently
being explored at Sandia that could be integrated nto a larger set of compo-
nents to enable autonomous resource management and optimization for HPC
applications and systems. Given the current complexity of HPC systems and
the expectation that components, systems, and applications will only continue
to become more complex and difficult to use, the ability to provide a software
stack that automatically and continually maps the system to the application
will be required. However, achieving this goal will require significant exploration
of novel capabilities and approaches, which in turn must be supported by a
sustained program investment involving expertise from across the entire HPC
community.



420 R. Brightwell et al.

References

1. Agelastos, A., et al.: The lightweight distributed metric service: A scalable infras-
tructure for continuous monitoring of large scale computing systems and applica-
tions. In: SC 2014 Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 154–165 (2014)

2. Barrett, B.W., et al.: The Portals 4.2 networking programming interface. Technical
Report, Technical report SAND2018-12790, Sandia National Laboratories (SNL-
NM) (2018)

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: SC 2012 Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
pp. 1–11. IEEE (2012)

4. Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., McIntosh-Smith, S.: Unprotected
computing: A large-scale study of DRAM raw error rate on a supercomputer. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC 2016, pp. 55:1–55:11 (2016)

5. Bouguerra, M.S., Gainaru, A., Gomez, L.B., Cappello, F., Matsuoka, S., Maruyam,
N.: Improving the computing efficiency of HPC systems using a combination of
proactive and preventive checkpointing. In: 2013 IEEE 27th International Sympo-
sium on Parallel and Distributed Processing, pp. 501–512. IEEE (2013)

6. Brandt, J., et al.: Quantifying effectiveness of failure prediction and response in
HPC systems: Methodology and example. In: 2010 International Conference on
Dependable Systems and Networks Workshops (DSN-W), pp. 2–7 (2010)

7. Brandt, J., Devine, K., Gentile, A., Pedretti, K.: Demonstrating improved appli-
cation performance using dynamic monitoring and task mapping. In: 2014 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 408–415 (2014)

8. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. Int. J. High Perform. Comput. Appli. 21(3), 291–312 (2007). https://
doi.org/10.1177/1094342007078442

9. Di Martino, C., Kalbarczyk, Z., Iyer, R.K., Baccanico, F., Fullop, J., Kramer, W.:
Lessons learned from the analysis of system failures at petascale: The case of Blue
Waters. In: International Conference on Dependable Systems and Networks (2014)

10. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput., 74(12), 3202–3216 (2014). http://www.sciencedirect.com/science/
article/pii/S0743731514001257

11. El-Sayed, N., Stefanovici, I.A., Amvrosiadis, G., Hwang, A.A., Schroeder, B.: Tem-
perature management in data centers: Why some (might) like it hot. In: Proceed-
ings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Con-
ference on Measurement and Modeling of Computer Systems. SIGMETRICS 2012,
pp. 163–174. ACM (2012). https://doi.org/10.1145/2254756.2254778

12. Engelmann, C., Vallee, G.R., Naughton, T., Scott, S.L.: Proactive fault tolerance
using preemptive migration. In: 2009 17th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, pp. 252–257. IEEE (2009)

13. Ferreira, K.B., Widener, P., Levy, S., Arnold, D., Hoefler, T.: Understanding the
effects of communication and coordination on checkpointing at scale. In: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC 2014, pp. 883–894 (2014)

https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.1145/2254756.2254778


Autonomous Management 421

14. Grant, R.E., Levenhagen, M., Olivier, S.L., DeBonis, D., Pedretti, K.T., Laros III,
J.H.: Standardizing power monitoring and control at exascale. Computer 49(10),
38–46 (2016)

15. Grant, R.E., Rashti, M.J., Afsahi, A.: An analysis of QOS provisioning for sockets
direct protocol vs. IPOIB over modern InfiniBand networks. In: 2008 International
Conference on Parallel Processing-Workshops, pp. 79–86. IEEE (2008)

16. Hwang, A.A., Stefanovici, I.A., Schroeder, B.: Cosmic rays don’t strike twice:
Understanding the nature of DRAM errors and the implications for system design.
ACM SIGPLAN Notices 47(4), 111–122 (2012)

17. Jha, S., et al.: Measuring congestion in high-performance datacenter interconnects.
In: 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), Santa Clara, CA, pp. 37–57. USENIX Association, Feburary 2020

18. Kaiser, H., Brodowicz, M., Sterling, T.: ParalleX: An advanced parallel execu-
tion model for scaling-impaired applications. In: 2009 International Conference on
Parallel Processing Workshops, pp. 394–401. IEEE (2009)

19. Kepner, J., et al.: TabulaROSA: Tabular operating system architecture for mas-
sively parallel heterogeneous compute engines. CoRR abs/1807.05308 (2018).
http://arxiv.org/abs/1807.05308

20. Sandia National Laboratories: Darma (2019). https://darma.sandia.gov
21. Lalanda, P., McCann, J.A., Diaconescu, A.: Autonomic Computing. Springer-

Verlag, London (2013)
22. Lange, J., et al.: Palacios and Kitten: New high performance operating systems for

scalable virtualized and native supercomputing. In: 2010 IEEE International Sym-
posium on Parallel and Distributed Processing (IPDPS), pp. 1–12. IEEE (2010)

23. Levy, S., Ferreira, K.B., DeBardeleben, N., Siddiqua, T., Sridharan, V., Baseman,
E.: Lessons learned from memory errors observed over the lifetime of Cielo. In:
SC’2018 International Conference for High Performance Computing, Networking,
Storage and Analysis, November 2018

24. Li, X., Huang, M.C., Shen, K., Chu, L.: A realistic evaluation of memory hard-
ware errors and software system susceptibility. In: Proceedings USENIX Annual
Technical Conference (ATC 2010), pp. 75–88 (2010)

25. Li, X., Shen, K., Huang, M.C., Chu, L.: A memory soft error measurement on pro-
duction systems. In: 2007 USENIX Annual Technical Conference on Proceedings
of the USENIX Annual Technical Conference. ATC 2007, pp. 21:1–21:6 (2007).
http://dl.acm.org/citation.cfm?id=1364385.1364406

26. Parashar, M., Hariri, S. (eds.): Autonomic Computing: Concepts, Infrastructure,
and Applications. Taylor & Francis, Inc., New York (2007)

27. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. In: Dependable Systems and Networks (DSN 2006), June 2006

28. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: A large-scale
field study. Commun. ACM, 54(2), 100–107 (2011)

29. Siddiqua, T., Papathanasiou, A., Biswas, A., Gurumurthi, S.: Analysis of memory
errors from large-scale field data collection. In: 2013 IEEE Workshop on Silicon
Errors in Logic-System Effects (SELSE) (2013)

30. Sridharan, V., et al.: Memory errors in modern systems: The good, the bad, and the
ugly. In: Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS 2015, pp.
297–310 (2015)

31. Sridharan, V., Liberty, D.: A study of DRAM failures in the field. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. SC 2012, pp. 76:1–76:11 (2012)

http://arxiv.org/abs/1807.05308
https://darma.sandia.gov
http://dl.acm.org/citation.cfm?id=1364385.1364406


422 R. Brightwell et al.

32. Sridharan, V., Stearley, J., DeBardeleben, N., Blanchard, S., Gurumurthi, S.: Feng
shui of supercomputer memory: Positional effects in DRAM and SRAM faults. In:
Proceedings of SC13 International Conference for High Performance Computing,
Networking, Storage and Analysis. SC 2013, pp. 22:1–22:11. ACM (2013)

33. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 19

34. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: An API for programming with
millions of lightweight threads. In: 2008 IEEE International Symposium on Parallel
and Distributed Processing Workshops, pp. 1–8, April 2008

35. Wilke, J.J., et al.: The DARMA approach to asynchronous many-task program-
ming. Technical Report, Sandia National Lab. (SNL-CA), Livermore, CA (United
States) (2016)

36. Younge, A.J., Pedretti, K., Grant, R.E., Brightwell, R.: A tale of two systems:
Using containers to deploy HPC applications on supercomputers and clouds. In:
2017 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 74–81. IEEE (2017)

https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19


Scientific Data Challenges



Smoky Mountain Data Challenge 2020:
An Open Call to Solve Data Problems in
the Areas of Neutron Science, Material
Science, Urban Modeling and Dynamics,
Geophysics, and Biomedical Informatics

Suzanne Parete-Koon1(B), Peter F. Peterson1, Garrett E. Granroth1,
Wenduo Zhou1, Pravallika Devineni1, Nouamane Laanait1, Junqi Yin1,

Albina Borisevich1, Ketan Maheshwari1, Melissa Allen-Dumas1,
Srinath Ravulaparthy1, Kuldeep Kurte1, Jibo Sanyal1, Anne Berres1,
Olivera Kotevska1, Folami Alamudun1, Keith Gray2, Max Grossman2,

Anar Yusifov2, Ioana Danciu1, Gil Alterovitz3, and Dasha Herrmannova1

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
paretekoonst@ornl.gov
2 BP plc, London, UK

3 US Department of Veterans Affairs, Presidential Innovation Fellows Program,
Washington D.C., USA

https://smc-datachallenge.ornl.gov/

Abstract. The 2020 Smoky Mountains Computational Sciences and
Engineering Conference enlists research scientists from across Oak Ridge
National Laboratory (ORNL) to be data sponsors and help create data
analytics challenges for eminent data sets at the laboratory. This work
describes the significance of each of the seven data sets and their associ-
ated challenge questions. The challenge questions for each data set were
required to cover multiple difficulty levels. An international call for par-
ticipation was sent to students, and researchers asking them to form
teams of up to four people to apply novel data analytics techniques to
these data sets.

Keywords: Data analytics · Artificial intelligence · Machine learning

S. Parete-Koon et al.—Contributed Equally.
This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2020
J. Nichols et al. (Eds.): SMC 2020, CCIS 1315, pp. 425–442, 2020.
https://doi.org/10.1007/978-3-030-63393-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63393-6_28&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-63393-6_28


426 S. Parete-Koon et al.

1 Introduction

All the data analytics challenges we host represent real world problems in dif-
ferent areas of research. The 2020 challenge solutions could impact unsolved
questions in materials science, research on energy conservation in cities, geologi-
cal studies based on seismic data, research toward matching critically ill medical
patients and their physicians with the most helpful clinical trials of novel ther-
apeutics and research toward halting the spread of COVID19.

By requiring the challenge questions for each data set to cover multiple dif-
ficulty levels and by allowing students and experts to compete in separate cat-
egories we hope to draw in a diverse set of researchers and perspectives to help
solve these questions.

The call for participation was broadly advertised and open to all interested
parties. It appeared in scientific and engineering newsletters such as HPC Wire,
and was spread by social media. Invitations to participate were also sent to sev-
eral university computer science department professors and users of Oak Ridge
Leadership Computing facility.

In addition to providing and serving the datasets for the challenges, orga-
nizers and data sponsors held an interactive webinar to explain the relevance
of each challenge task and describe the size and composition of its associated
dataset. Subsequently, three online Reddit.com forums were held in the two
months before solutions were due, so participants could post questions about
the tasks and get answers from each other and the data sponsors. Lastly, to
accommodate the student challenge competitors who may not have ever writ-
ten a scientific paper, the challenge organizers held a best practices in scientific
paper writing webinar the week before the solution papers were due.

In this work, each of the challenges has its own section wherein the authors of
the challenge describe the motivation and science behind the challenge, the data
and its origins, and the reasoning behind the individual challenge questions.

2 Challenge 1: Understanding Rapid Cycling
Temperature Logs from the Vulcan Diffractometer

Neutron scattering allows scientists to count scattered neutrons, measure their
energies and the angles at which they scatter, and map their final positions.
This information can reveal the molecular and magnetic structure and behavior
of materials, such as high temperature superconductors, polymers, metals, and
biological samples. The Spallation Neutron Source (SNS) facility at the Oak
Ridge National Laboratory provides the most intense pulsed neutron beams in
the world for scientific research and industrial development.

2.1 Background

The VULCAN diffractometer [1] is designed to understand the fundamental
aspects of material behaviors during synthesis, processing, and service. One of
the experiments conducted at SNS is designed to generate high intensity neutron
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pulses for the study of materials, where, over the course of the measurement,
the temperature is varied as a function of time [2]. The overall purpose of the
neutron measurement is to understand the changes in structure of the material
as a function of temperature.

The experiment is conducted as follows: the sample is rapidly heated, then
the heat source is turned off allowing the sample to relax and reach an equilib-
rium. Then the sample is rapidly heated again and the experiment is repeated
several times. The goal is to associate neutron events occurring within a certain
temperature bin. An event is defined as follows: the event starts when the sam-
ple is subjected to rapid heating and it ends right before the next rapid heating
occurs. This is called a heat cycle.

2.2 Dataset

The VULCAN Beamline dataset [4] provides the sample measurement, where
temperatures are recorded in two physically different places on the sample. These
are held in two different hdf5 groups in the data file. Figure 1 depicts Tempera-
ture (in Celsius) vs. time (in seconds), a sample measurement on the VULCAN
[3] beamline. The total size of the data is 1.06 MB and a and a laptop, worksta-
tion or small cluster should be suitable for developing solutions to this challenge.

Fig. 1. Temperature vs. time on the VULCAN Beamline

2.3 Challenges of Interest

These questions seek insight into the behavior of the sample as the temperature
is varied.

1. The goal is to identify heat cycles pertaining to equivalent temperatures dur-
ing the same heating or cooling phase. For example, two data points at 800C
are in the same group only if both of them are in either the heating or cool-
ing cycle. To that end, you need to identify the beginning and end times of
the heat cycle and temperature group it needs to belong to. (The latter part
could be thought of as a clustering problem.)
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2. How many events are there in each group and how similar are the identified
events? A sample input to the question could be attributes of the heat cycle
like height, step size etc.

3. Once the heat cycles are identified, how do they vary from one event to the
next? A visualization would be great help showcase this variation.
Note: The dataset consists of two sample measurements that are highly cor-
related with each other. We suggest the second measurement be used as a
validation set.

3 Challenge 2: Towards a Universal Classifier for
Crystallographic Space Groups

3.1 Background

State of the art electron microscopes produce focused electron beams with atomic
dimensions and allow to capture diffraction patterns arising from the interaction
of incident electrons with nanoscale material volumes. Backing out the local
atomic structure of said materials requires compute- and time-intensive analyzes
of these diffraction patterns (known as convergent beam electron diffraction,
CBED). Traditional analyses of CBED requires iterative numerical solutions of
partial differential equations and comparison with experimental data to refine
the starting material configuration. This process is repeated anew for every newly
acquired experimental CBED pattern and/or probed material.

3.2 Dataset

In this data, we used newly developed multi-GPU and multi-node electron scat-
tering simulation codes on the Summit supercomputer to generate CBED pat-
terns from over 60,000 materials (solid-state materials), representing nearly every
known crystal structure [5]. The overarching goals of this data challenge are to:
(1) explore the suitability of machine learning algorithms in the advanced analy-
sis of CBED and (2) produce a machine learning algorithm capable of overcoming
intrinsic difficulties posed by scientific datasets.

The dataset is split across multiple HDF5 files and an accompanying Jupyter
Notebook provides a detailed description on how to navigate the file structure to
access the data samples and the associated materials properties. Briefly, a data
sample from this data set is given by a 3D array formed by stacking three CBED
patterns simulated from the same material at three distinct material projections
(i.e., crystallographic orientations). Each CBED pattern is a 2D array (512 × 512
pixels) with float 32-bit image intensities. The dataset is 589 GB and a workstation
or small cluster should be suitable for developing solutions to this challenge.

Associated with each data sample in the data set is a host of material
attributes or properties which are, in principle, retrievable via analysis of this
CBED stack. These properties consist of the crystal space group the material
belongs to, atomic lattice constants and angles, chemical composition, to name
but a few. Of note is the crystal space group attributed (or label). All possible
spatial arrangements of atoms in any solid (crystal) material obey symmetry
conditions described by 230 unique mathematical discrete space groups.
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3.3 Challenges of Interest

The data challenge tasks revolve around developing and implementing a machine
learning (ML) algorithm to predict a material’s space group, essentially a classi-
fication task. The data set is, however, heavily imbalanced (i.e., number of data
samples per class). This imbalance is not an artifact, instead it reflects the reality
that most known materials have low symmetry and as such are not uniformly
distributed across the 230 space group classes.
The challenges are:

1. Perform exploratory data analysis on both CBED patterns and materials
properties to summarize data characteristics.

2. Develop an ML algorithm for space group classification of CBED data.
3. Implement proper ML techniques to overcome data/label imbalance and show

how it affects the performance of the ML algorithm in (1).
4. Implement an ML algorithm for multi-task prediction of a space group in

addition to other material structural properties and show how it affects the
performance of the ML algorithm.

Notes on Challenge Tasks

1. Preliminary task (1) is meant to provide better understanding about both
input data (e.g. principle components of input images) and targets (e.g. dis-
tribution of space groups).

2. A participant may choose to solve challenges (1), (2) and (3), or (1), (2) and
(4). Solving all 4 questions is optional.

3. Regarding approaches to (2), our preference is for ML techniques (e.g. loss-
weighting, model ensembles, active learning, decision boundary analysis with
GANs, etc.,), in lieu of brute-force data augmentation approaches (e.g. mixup,
random erasing, etc.).

4. If a deep learning model is used by the participant, our preference is for the
implementation use one of the following three frameworks: MXNet, Pytorch
or TensorFlow.

5. Our preference is for the ML algorithms be implemented in one of the follow-
ing languages: Python, C, C++, and/or Julia.

4 Challenge 3: Impacts of Urban Weather on Building
Energy Use

4.1 Background

Recent advances in multi-scale coupling of high-performance computing models
provide unique insights into how interdependent processes affect one another.
Some of these processes are uniquely observable in urban environments. This
data challenge addresses questions at the intersection of the natural environment
and urban infrastructure by encouraging participants to examine variations in
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weather and building energy use, seasonal influences, and the building types
most sensitive to weather at daily, monthly, and yearly scales. The dataset for
this challenge was generated under a Laboratory Directed Research and Devel-
opment project aimed at examining the impact of an area’s built environment on
weather and energy use. Data includes a year of simulated weather data taken
at 15-minute intervals in a section of downtown Chicago; the latitude/longitude
location for each building in the study area, each building’s 2D footprint and
height, and a year of building-by-building energy use simulation (EnergyPlus)
data run by Joshua New, Mahabir Bhandari, Som Shrestha (ORNL, Energy
and Environmental Sciences Directorate), and Mark Adams (ORNL, National
Security Sciences Directorate).

4.2 Dataset

The dataset [6] comprises three elements:

1. High resolution, 90m simulated weather data for 1 year at 15-min intervals
(with known gaps toward the end of each month). These files are provided in
a comma separated value (CSV) format.

2. A mapping of individual buildings with individual IDs, their lati-
tude/longitude location, and height (provided in Excel file).

3. Energy simulation output of these individual buildings, at 15-min intervals
for one year (provided in java script object notation (JSON) and other files).

The total data set is 6.35 GB and a laptop, workstation or small cluster should
be suitable for developing solutions to this challenge.

4.3 Challenges of Interest

The questions that are of interest for this challenge are:

1. Are there interesting variations in weather and building energy use data for
the geographic area?

2. Which buildings in the study are most sensitive to weather (e.g., temperature,
humidity, wind, radiation) effects?

3. Are there any interesting visualizations that illustrate the changing dynamics
of the simulated urban environment?

4. How can the data best be divided into subsets for meaningful analysis and
visualization?

5. How does energy use in each building change through the year?
6. How is energy use different during the coldest and hottest months (e.g., Jan-

uary and July) of the year as compared to during those of less extreme tem-
perature?

Participants are welcome to bring in additional datasets to combine with the
provided data to create meaningful insights.
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We look forward to presentations using novel methods for interpreting and
visualizing this data that draw on machine learning and other big data tech-
niques. We welcome new collaborations to complement the work of understand-
ing climate, infrastructure, and energy use in urban areas from a systems per-
spective. We hope the participants enjoy the interdisciplinary nature of the
dataset and its challenges.

5 Challenge 4: Computational Urban Data Analytics

5.1 Background

Urban environments are complex systems in which social factors, mobility, build-
ing energy, and urban climate interact with each other. Large parts of urban
energy use are driven by the movement of population through the city. Each
day, humans consume energy, whether they are traveling, at home, or in their
workplace. Transportation and building energy are two of the top consumers of
energy use in the United States. Transportation accounts for 29% of energy use,
whereas buildings account for 38–40% of energy use (combined residential and
commercial) [25,26].

There are many factors that influence energy use in any particular building,
but one of the major contributing factors is the number of occupants. In this
challenge, we provide data that can help model the population’s behavior and
decision making, and obtain a more accurate representation of energy use in
buildings, which nicely builds upon our previously published work [7], where
we developed a data-driven transportation model, which determines building
occupancy throughout the day in order to create more accurate simulations for
building energy.

5.2 Dataset

Due to the tightly coupled nature of urban systems, we provide a wide variety
of data for this challenge. All data is from 2017 (or based on 2017 inputs in
case of simulations) unless noted otherwise. We hope that with this breadth of
available data, every challenge participant will find an area they are particularly
passionate about, however it is not a requirement to use all provided data. The
size of the dataset is about 2 GB unzipped and a laptop, workstation or small
cluster should be suitable for developing solutions to this challenge.

Vehicle Data. Vehicle data provides information on the population’s daily
trips as well as vehicle types from survey data. It is a simulation snapshot of a
transportation simulation that was based on surveyed data.

1. Simulation snapshot for morning commute from TRansportation ANalysis
SIMulation System (TRANSIMS): This snapshot contains vehicle traces (in
Universal Transverse Mercator Coordinates) at 30-s intervals for one simu-
lated day. At each time step, we also have the link (road segment) ID, driver
ID, and vehicle speed.



432 S. Parete-Koon et al.

2. Schedule for morning commute from National Household Travel Survey
(NHTS): This is an extract of the official NHTS data [8] which only con-
tains survey responses from Chicago.

3. Vehicle type distribution: Simplified Federal Highway Association (FHWA)
classifications of vehicles in Chicago, which was derived from NHTS data.

Emissions Data. To study emissions, we are providing traffic volumes and
emissions that were generated using an emissions simulation, by using the traffic
simulation outputs. In addition, we provide weather data to enable the study of
relations between weather and emissions.

1. Road-level traffic volumes (aggregated from TRANSIMS outputs).
2. Road-level emissions generated using MOVES, an emissions simulator. This

simulation is based on traffic volumes and weather patterns throughout a
year.

3. Weather data from DarkSky. For this data, we provide instructions on
downloading it, as it is free to use but the license agreement does not allow
redistribution.

Road Network. A transportation-focused dataset would not be complete with-
out the road geometry. We provide the road network that was used for the
simulations, along with some metadata.

1. The road network has the link IDs for each road segment, as well as road
type etc.

2. GeoJSON file of the road network used for the TRANSIMS and MOVES
runs.

3. Definition of different link types.

Building Data. We provide building footprints and socioeconomic data to
provide a better idea of population distribution and demographics, and the type
and distribution of buildings throughout the area.

1. Building footprints from Microsoft (2019): All US building footprints [9] and
the clipped version for Chicago [10].

2. Land Use data from Chicago Metropolitan Agency for Planning (CMAP):
GeoJSON file containing polygon data with land use attributes and a Code-
book defining the land use codes
(a) Socioeconomic data is provided for different community areas (neighbor-

hoods, such as “Chicago Heights”) [12]:
i. Population from CMAP/Census (2010).
ii. Census data summarized to community areas [11].
iii. Spreadsheet (CSV) of census data by community area.
iv. GeoJSON of community area polygons.
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(b) Community Area Snapshots contain additional information such as
employment, travel mode choice, housing types, job types in community
(held by residents, available in community), walkabilty, etc. [12].
i. Spreadsheet (CSV) of Community Area Snapshot data.
ii. Data dictionary explaining the different fields.

Each of the folders in the provided dataset has a README file with more
detailed information on file format and contents.

5.3 Challenges of Interest

One of the main challenges in coupled or integrated systems is the disparity of
data sources. For this data challenge, we would like participants to address one
of the three following tasks:

– Develop an algorithm to efficiently assign vehicle occupants to nearby
buildings.
1. In [7], we have performed an initial weighted quad tree-based approach

to map vehicles to buildings.
2. The ideal algorithm should be efficient and accurate. Consider the trade-

off.
3. The resulting mapping should be realistic. Consider building size, use

type (the vehicle traces are only for commute) etc.
– Perform an area-wide correlation analysis of vehicle emissions.

1. Determine spatial variation, and variation based on other factors, such
as land use of surrounding areas, population, network classification (road
type), weather, etc.

2. Correlate the provided emissions data with other provided datasets.
– Characterize traffic patterns from the simulation.

1. What are the traffic hot spots? Is there any congestion?
2. What are the travel times? How do they vary through out the day?
3. What are busy times? How well do they match the commute pattern from

NHTS?
4. How do speeds vary spatially and temporally?
5. What are the most popular roads?
6. Can you draw conclusions about the simulation setup from the output?

We hope that the wide range of questions will provide an interesting challenge
for every participant. If participants have their own unique ideas based on using
the data we provided, this will also be of interest.

6 Challenge 5: Using Machine Learning to Understand
Uncertainty in Subsurface Exploration

In the energy industry, an understanding of subsurface characteristics and struc-
ture is crucial to identifying and localizing untapped resources. At a high level,
the process of taking an entirely unexplored region of earth and generating an
actionable understanding of its structure includes:
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1. Seismic data collection: Collect raw signals from the subsurface using tech-
niques similar to sonograms used in hospitals.

2. Seismic data pre-processing: Quality check and clean the collected raw signals.
3. Seismic migration and velocity model construction: Use the raw signals and

our understanding of the likely geology of the region to construct a 3D rep-
resentation of the subsurface.

4. Seismic interpretation: Using the constructed 3D representation, interpret
where faults, layers, and other important structural features are in the sub-
surface.

With each of these steps comes an amount of uncertainty from various sources
of potential error: instrument error, human error, modeling error, and more.
Despite this, the output of most seismic processing workflows is a single, gold
standard, output image. An image which we know cannot possibly be 100%
accurate!

It is crucial that future seismic processing workflows start to incorporate
uncertainty when estimating the true subsurface structures. Rather than out-
putting a single interpretation, we should aim to emit a spectrum of possible
realizations and an understanding of where uncertainty is high or low.

6.1 Background

Seismic Data Collection. Seismic data collection (i.e., the process of con-
ducting a seismic survey) involves transmitting powerful sound waves into the
ground and then recording their echoes at the surface as they bounce off bound-
aries between layers in the Earth. This process parallels techniques used in x- ray
and ultrasound imaging in the medical field to reconstruct structures inside the
human body. The figure below depicts a typical offshore seismic survey setup,
in which sound waves are transmitted from an air gun behind a survey ship and
the return echoes are recorded by a line of hydrophones being towed behind the
ship.

During a seismic survey, one or more sources of sound energy are used to
transmit waves into the ground. One or more receivers are used to record the
reflection of that sound energy at the surface. The raw output generated from
a seismic survey is a set of recorded waveforms at each receiver for each source.
This recording stores the amplitude of the reflected sound wave at the surface
as a function of the time it took to travel to the receiver.

Seismic Data Preprocessing. Pre-processing of our raw seismic data can
include a multitude of steps. Broadly, seismic preprocessing aims to clean up
and strengthen signals in the seismic data while reducing noise, facilitating later
stages of the seismic processing pipeline.

Seismic Migration and Velocity Model Construction. Seismic migration
refers to the process by which the seismic waves received at receivers are back-
propagated to the source through a simulated version of the seismic medium.
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Fig. 2. Seismic Survey [13]

Through knowledge of (1) the source location, (2) the receiver location, (3) the
time/amplitude of the received signal, and (4) the medium through which the
signal traveled, we can simulate in reverse the propagation of the signal through
the subsurface, identify its reflection point, and thereby identify the location of
a potential object/reflector of interest in the subsurface.

Note how crucial an accurate estimate of the subsurface velocity of sound
waves is in this process. Without an accurate velocity estimate, it is impossible
to accurately predict the distance traveled by sound waves in the subsurface in
a certain period of time.

While building a velocity model is a critical component for accurate seismic
reconstruction, a number of uncertainties are involved in the process. Simply
asking two different geophysicists to perform velocity model construction on the
same seismic traces can produce drastically different velocity models. Quantify-
ing and visualizing this uncertainty in velocity models will be the prime focus
of this data challenge.

One common practice for checking the validity of a given velocity model
is through offset pair gathers. Modern seismic surveys generally involve many
sources and many receivers. As a result, many pairs of sources and receivers
capture reflections off the same reflector in the subsurface (see Fig. 3). This
redundancy can be helpful in validating the quality of a velocity model, as an
accurate velocity model is expected to produce similar/identical depth estimates
for a given reflector no matter which offset pair a reflection is received from.

Gathers generally refer to collecting the depth estimate for a given reflector
across many offset pairs and plotting them visually, with depth on the y axis
and offset pairs along the x axis. In a gather of an accurate velocity model,
geophysicists expect to mostly see horizontal lines, indicating that the depth
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Fig. 3. Many pairs of sources and receivers capture reflections off the same reflector in
the subsurface.

Fig. 4. Reasonably good gathers show mostly horizontal lines, indicating that the depth
estimate for a layer is the same across all offset pairs.

estimate for a layer is the same across all offset pairs. See Fig. 4 for several
examples of reasonable gathers, indicated by the prevalence of horizontal lines.

Seismic Interpretation. Once a final seismic image is rendered following seis-
mic migration, seismic interpretation—the process of identifying faults, reser-
voirs, and other features of interest in the imag—begins. This manual labeling
is then used in field development and reservoir characterization. See Fig. 5 for
an example seismic image with faults manually labeled and emphasized.

Fig. 5. A seismic image with faults manually labeled and emphasized [14]

Dataset. The dataset included in this data challenge serves as a starting point in
exploring techniques for quantifying uncertainty in seismic processing workflows.
In this dataset we are focused on quantifying and visualizing the uncertainty
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in our estimations of the density of the subsurface based on how varying those
estimates impacts our output 3D volume. At a high level, this dataset consists of
a set of synthetic but realistic models of the density of the subsurface, randomly
generated based on a single, known, synthetic ground truth. This dataset also
includes the final 3D realizations generated using those density models (also
called velocity models). These files are stored in the industry standard SEGY
format, and an example Jupyter notebook is provided to illustrate how to load
and visualize them.

A 3 GB trial dataset is given to help competitors get started. The full dataset
is 49 GB. A laptop, workstation, or small cluster should be suitable for developing
solutions to this challenge.

6.2 Challenges of Interest

The end goal of this data challenge is to construct an uncertainty map for a
given seismic survey, labeling each pixel in a final 2D seismic image with a value
between 0.0 and 1.0 indicating how volatile the estimate for that pixel is.

However, we also welcome submissions that include any intermediate work
towards that end goal or answers to any of the below challenge questions. Even
if you are unable to complete the entire challenge, any submissions that show
progress towards this end goal and lay out ideas for how the challenge could
eventually be completed will be considered.

1. Given that geophysicists generally use horizontal lines in gathers as a good
indicator of velocity model accuracy, build a model (analytical, mathematical,
data-driven, or otherwise) to estimate the quality of each velocity model based
on its associated gathers.

2. Train a model to label each pixel with an uncertainty value between 0.0
and 1.0 indicating how uncertain any given realization of that part of the
subsurface is.

3. Generate a single uncertainty map given all of the velocity models, realiza-
tions, and gathers at hand.

4. Generate some form of visualization of this uncertainty map of the subsurface.

7 Challenge 6: Using Artificial Intelligence Techniques to
Match Patients with Their Best Clinical Trial Options

The Presidential Innovation Fellows, US Department of Veterans Affairs, and the
Oak Ridge National Laboratory Health Data Sciences Institute are coordinating
this Data Challenge, which draws on resources across a dozen federal agencies
and departments. The related project, Health Tech Sprint, emphasizes the need
for open federal data for artificial intelligence (AI) applications as defined by the
newly signed OPEN Government Data Act under the Foundations for Evidence-
based Policymaking Act (signed Jan 15, 2019).
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7.1 Background

Novel therapeutics, such as those under development in clinical trials, are often
a treatment option for patients with serious and life-threatening diseases such as
cancer. Increasing patient awareness of clinical trials is believed to be a factor in
reducing time for participant recruitment, a very large cost category in clinical
trials. Thus, applying AI to help patients and their health care providers find
clinical trials of novel therapeutics may improve patient care and, by aiding in
recruitment, reduce drug development costs.

For AI to be useful in trial matching, both representative patient data and
clinical trial eligibility information, ideally in a structured format, are needed. In
addition, expert-based guidance on matching patients to trials, including which
criteria are matched, is useful for building and testing models.

The AI-able data ecosystem seeks to enable AI by bringing together an
ensemble of interlinked datasets with data suitable for AI in a given use case.
Having this information in the public domain enables standardization by facili-
tating testing across different approaches. This challenge features the first such
standardized dataset ensemble related to clinical trial matching, with the various
interlinked datasets provided.

7.2 Dataset

We provide three datasets to the data challenge participants

1. A subset of eligibility criteria translated into machine-readable code from a
selected group of cancer clinical trials.

2. Records based on callers to the NCI’s Cancer Information Service that have
been enhanced with synthetic data and translated into machine-readable
code.

3. Participant records matched against clinical trials for which the eligibility
criteria and participant data were previously translated into machine-readable
code.

The size of the three datasets is 1.3 MB and a laptop, workstation, or small
cluster should be suitable for developing solutions to this challenge. A second
version of the third dataset, produced by oncology professionals, serves as a
comparison dataset for the matches identified through the application of AI.
For more information on the above datasets and potential approaches on usage,
please see reference [15].

In addition to the datasets provided, participants are encouraged to use other
publicly available datasets. For example, National Cancer Institute (NCI)-funded
cancer clinical trials, including API with annotations on disease eligibility criteria
for all trials, is available at https://clinicaltrialsapi.cancer.gov.

7.3 Challenges of Interest

Challenge tasks are listed below. However, participants are encouraged to suggest
and tackle challenge tasks different from those listed below. Innovative use of the
provided data is strongly encouraged.

https://clinicaltrialsapi.cancer.gov
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1. Data representation
– Develop novel big data structures to represent the clinical trials and the

patient data that accommodate the interaction of the three datasets. The
ultimate goal is to support thousands of clinical trials being matched with
millions of people.

2. Algorithm development
– Develop novel algorithms for finding the most suitable matches between

patients and clinical trials.
3. Visualization/human computer interaction

– Develop visualization and/or human-computer interaction solutions to
enable medical providers to effectively leverage the data for clinical deci-
sion support.

Notes on the Challenge Tasks

1. A participant may choose to do any question(s) they prefer. Completing all
three questions is optional.

2. Regarding approaches to question 2, our preference is to receive solutions
involving machine learning techniques.

8 Challenge 7: The Kaggle CORD-19 Data Challenge

8.1 Background

As governments, policymakers, and scientists across the globe are racing to iden-
tify potential vaccines and drugs for SARS-CoV-2, many scientists hope the
information needed to identify a vaccine lies in the millions of available research
documents. To support mining information from research literature, the White
House, along with leading industries, has made a dataset of research publications
directly related to the outbreak available to the general public [16]. Some of the
most important questions pertaining to the outbreak which were identified by
the US NASEM and the WHO, were published as part of a public challenge
along with the publication dataset on Kaggle [17].

8.2 Dataset

The entire body of scientific literature is growing at an enormous rate; it is cur-
rently estimated at over 100 million publications [20] with an annual increase of
more than 5 million articles. The publication set of corona virus-related literature
provided for the Kaggle COVID-19 Open Research Data Challenge (CORD-19)
have been growing at a rate of thousands of new publications per year (Fig. 6) and
the growth has nearly doubled since the start of the current epidemic. Thus, it is
not only difficult for scientists to source inspiration and new insights from their
own domains, but also other adjacent domains. Since comprehensive reading of
the growing scientific literature is now beyond the capacities of any human being,
artificial intelligence techniques, including natural language processing and text
mining, offer the potential to intelligently parse large bodies of loosely connected
text to provide scientists solving some of the world’s most pressing challenges
with meaningful insights [22–24].
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Fig. 6. Growth of papers in the CORD-19 dataset. Figure from [21].

8.3 Challenges of Interest

To kick-start the development of such AI techniques, the Kaggle CORD-19 chal-
lenge lists some of the most important questions pertaining to the COVID-19
epidemic, which will require parsing and connecting information provided in the
available literature. This list of questions evolves as we learn more about the
virus and identify new questions which need to be answered, and includes ques-
tions about symptoms, risk factors such as pre-existing conditions, and vaccines
and therapeutics currently under investigation. However, answering some of the
questions may require going beyond existing CORD-19 publication set. What if
an existing vaccine developed for another disease has a potential to also work for
COVID-19, but hasn’t as of yet been mentioned in COVID-19 related literature?
Expanding beyond just the directly relevant literature exacerbates the need for
AI techniques.

We invite submissions describing complete or partial solutions to any of the
Kaggle CORD-19 Tasks to SMCDC for consideration for a best solution paper
award, poster presentation, and publication in the conference proceedings. The
SMCDC poster session will give selected researchers perusing the CORD-19
dataset a place to present their work and discuss it with other researchers.

9 Conclusion

In addition to contributing to the solutions of open research questions, we hope
these challenges gave participants a taste of the types of data and modeling
problems in each of the scientific areas featured in the 2020 Data Challenge.
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We also hope these challenges got researchers thinking about how important
and difficult it is to account for uncertainty and probability in large scientific
datasets.

In total, 52 teams competed to solve the seven data challenges. Of those, 23
teams submitted solution papers. The best solutions were selected for publication
by a peer review.

About 90% of the finalists identified themselves as students. According to
studies in educational psychology such as [18] and [19], novel intellectual chal-
lenges, like those posed by the 2020 Data Challenge, can be highly motivating
and promote deeper engagement in tasks and lead to longer-term persistence in
academic pursuits like research.
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Abstract. As scientific facilities produce more and more data, it is the job of
scientists to parse through and present the data in clear, well-formatted, and accu-
rate mediums in order to apply this information to future projects. This was the
primary goal when processing the Spallation Neutron Source’s challenge data for
the VULCAN diffractometer. The diffractometer generates high-intensity neutron
pulses towards a material and the changes in temperature over time are recorded.
This information can reveal the molecular structure of the material as well as their
behavior under certain conditions and duress. As the material was rapidly heated
and cooled, we examine the change in temperature, eliminate stagnant data, and
divide information into cycles. Doing so provides insight into the composition and
behavior of the material, as well as the diffractometer’s process.

Keywords: Time series · Data visualization · Neutron science · Data wrangling

1 Introduction

When confronted with the challenge data, our team decided it was a perfect opportu-
nity to experiment with data visualization using the virtual reality headset Magic Leap.
Remotely accessible, yet interactive visualization was the primary goal when process-
ing the Spallation Neutron Source’s challenge data for the VULCAN diffractometer.
The diffractometer generates high-intensity neutron pulses towards a material and the
changes in temperature over time are recorded. This information can reveal the molecu-
lar structure of the material as well as its behavior under certain conditions and duress.
The temperatures and time were recorded as the material was rapidly heated and cooled.
The goal of this project was to wrangle this data into appropriate formats and visualize
it in a clear, accessible, and informative way, thereby providing further information and
concepts to future studies.

This is a U.S. government work and not under copyright protection
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2 Tools

2.1 Software

Pandas provided an opensource library which we took full advantage of. Pandas
provided the data frame structurewe use to load in andwrangle the provided information.

Matplotlib/NumPy [4] allowed for simple and internal examination of the data.

Altair is a declarative statistical visualization library for Python based with Vega: a
high-level grammar of interactive graphics.

Seaborn is a Python based visualization library based on matplotlib and provided a
high-level interface for the statistical graphics.

2.2 Hardware

As the teamwas heavily involvedwith theVisual Informatics for Science andTechnology
Advances (VISTA) Lab at Oak Ridge National Laboratory, visualization in a 3D space
was a focus and learning opportunity of this challenge. We used theMagic Leap virtual
reality headset and its connection to Unity and Helio, its built-in browser, to visualize
within our homes.

3 Data

The data contained values of the tested materials temperature over time as the diffrac-
tometer conducted its tests. It was provided in a HDF5 file [1]. A Python script broke this
information down into two.csv files (t1 and t2). All examples listed throughout the paper
have been taken from the second set (t2) on suggestion of the challenge authors. Each
file contained about sixty-four thousand values of time and temperature as the diffrac-
tometer measured the cycles of heating and cooling in the material. All information was
then loaded into a Pandas [2] data frame to wrangle with greater efficiency.

4 Technical Approach

Pre- and Post-processing
Approaching time series data is an arduous process, there is a lot of wrangling to be
done. One of the first issues we came across were stagnant values at the beginning and
the end of the files. These values represented a. The material’s resting temperature and
b. Its gradual return to resting temperature post heating. The first of these issues could
be eliminated so as not to throw off calculations at a later point. The second had to
be carefully examined to not disregard the cooling process of the material inside of
the cycles, yet not provide false positives during the final cooling. We eliminated these
first values by parsing through the values and determining a cutoff temperature of 29 °C.
Filtering through the values above that cutoff provided the data we could begin to section
off into cycles, remaining aware of the small spices in temperature during cooling.
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Another problem we had to be aware of when examining data were small spikes
and valleys in the data we needed to disregard when determining the pattern. This was
accomplished by identifying cycles with a rolling average window. This is establishing a
mean while traversing the data while being conscientious of the weight of certain values.
A rolling average with a window of 20 values allowed our team to identify cycles with
precision and append the cycle start and end values to the data frame. A rolling average
is represented by:

SMA = nA1 + A2 + . . .+ An

Pandas allowed this to be easily accomplished as it provided built in functions to take
the average between values, calculating the moving range with a window of 20 values to
smooth small jumps in data, and then to calculate the differences between those ranges.

Code Listing 1 - Brief Calculations 

Then, by setting a Boolean variable, we were able to observe whether we consider
the values to be in a cycle by whether they have stopped cooling. We monitor cycle start
and stop values by iterating through the information to look for when the rolling average
window has begun the next heating process, if it is true, we update the cycle count, mark
the starting value of the next rotation, and continue.
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Code Listing 2 - Cycle Detection Code 

All code was contained within the public GitHub repo of the author [6].

Problem 1
Identify heat cycles pertaining to equivalent temperatures during the heating and cooling
phase.

Graphing the data provided a clear view of decreasing plateaus of the high temper-
atures over time. The base graph [Fig. 1] demonstrates the values of the time series as
a blue line, while light orange vertical lines denote the beginning/stopping points of the
marked cycles. Doing so allowed the team to then isolate specific cycles to then group
together by similarity of temperature height. The Magic Leap then allowed us to overlay
individual cycles for comparison.With a focus on this project being on data visualization
in a 3D space, this allows the representation of chosen separate cycles to be compared
visually.

A suggestion inside the challenge was to compare the cycles by equivalent temper-
atures during heating and cooling cycles as that may provide insight on the material’s
response to the rapid temperature changes over time. Choosing a cap of 800 ° Celsius
will show that specific temperature being reached 304 times within the second dataset.
As shown there were plateaus above 800 throughout the first half of the experiment but
from a certain point that height was only reached through intermittent spikes and then
never reached again as the cycles top height maxed out at around 650 ° Celsius before the
final cooling. The below graph [Fig. 2] was a color histogram using the library Seaborn
[5] to pinpoint recurring temperatures up to five decimal places, the range adjusted as
needed.
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Fig. 1. Cycle detection marked

Fig. 2. Frequency of temperature

Problem 2
How many events are there in each group and how similar are the identified events?

There was a total of 80 cycles within the second data set (t2) as identified by
our program. Cycles span between 400 and 700 s in length with an average of
541.1457244551898 s in a cycle. Isolating cycles for comparison yields a varying rep-
resentation of sharp inclines sliding down to a slow return to resting temperature. They
vary significantly over time as the peak temperature reached lessens consistently. The
below graph is the difference between the first and the second cycle (Fig. 3).
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Fig. 3. First and second cycles

The graph below represents the difference in presentation between the first and final
cycle.

As we observe, the peak of the cycle lowers significantly after numerous tests. From
a time series analysis point of view, this is important as it could provide insight into the
degradation of cycle peaks over time. By comparing the cycles and their differences, we
can observe a steady decline in the heat cap of the material as the plateau of absorption
decreases (Fig. 4).

Fig. 4. First and last cycle
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5 Results

Using Helio, the Magic Leap built in browser, we pulled up the Altair [3] provided
visualization through GitHub. This allows users to access interactive graphs within their
homes [Fig. 5]. The graph was interactive to the points of manipulation along the scale
and zooming capability. As such, users can isolate a specific cycle for examination, zoom
in or out, highlight, or travel along the axis. The Magic Leap headset is also capable of
photo and video capture as well as streaming on the live streaming platform Twitch. Live
streaming capabilities does increase accessibility, especially during the time of COVID
enforced remote work. Augmented reality technology allows the feel of a VISTA lab
within our own homes.

Fig. 5. Observation of the graph in magic leap assisted by Dr. Finnegan (cat)
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6 Improvements

Improvements would be focused on data visualization in a 3D space. We ran into some
implementation issues with the Magic Leap when it came to maintaining compatibility
with game engines like Unity and Unreal. Using Unity to create an interactive 3D visu-
alization that could be openly manipulated was a goal that was unfortunately cut short
by the incompatibility. Branching out to possibly use the Microsoft HoloLens 2, as a
augmented reality substitute is in the works. The clear goal would be an interactive heat
map that could be streamed to audiences of scientists. The presence of the COVID-19
pandemic was an inspiration for ensuring data visualization remained accessible while
remote without disregarding the importance of interaction. Using Vega and the built-in
browser was an acceptable substitution but branching out into a clearer execution would
be an improvement to strive for in the future.

7 Conclusions

Our team took the data, wrangled it by eliminating unnecessary values, calculated, and
stored important information within the data frame, and graphed information using the
Altair library. Accessed the interactive graphs through theMagic Leap augmented reality
headset allowed 2D holographic interaction with the data and shared the interactions
through a live stream. This can allow future projects to be visualized remotely yet
effectively using a single virtual/augmented reality headset and a streaming service.
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Abstract. We present a machine learning approach to classify conver-
gent beam electron diffraction (CBED) patterns and a novel ensemble
technique of combining binary classifiers to address label imbalance in
the dataset. We train a primary classifier on the full dataset and addi-
tionally train

(
n
2

)
binary classifiers on pairs of labels using a weighted

loss function that corrects for class imbalance. At test time, we combine
the predictions of the primary classifier and binary classifiers using a
method we call Probability Flow, leading to a 60.79% top-1 accuracy and
a 76.95% top-5 accuracy. All of the source code is available at https://
github.com/jinpan/smc challenge2.

1 Exploratory Data Analysis

A common material analysis method is to use electron microscopes to produce con-
vergent beam electron diffraction (CBED) patterns, and then analyze the patterns
using iterative numeric solutions of partial differential equations and comparison
with empirical data to determine material properties, such as the crystallographic
space group (SG) the material belongs to. This paper explores the suitability of
using ML techniques to create a black box classifier to predict SG.

The CBED dataset is comprised of 187,155 patterns, with a 79/11/10 split
between training, validation, and testing. These patterns span 16,152 distinct
chemical formulas and 200 SGs, but the representation of each SG is imbalanced:
the top 20% of SGs represent over 80% of the training data (see Fig. 1), and there
is no data for 30 out of the total 230 mathematically distinct SGs. This imbalance
reflects the natural reality that most materials belong to a few common SG.

1.1 Image Scaling Function

Each pattern is represented as a 3 × 512 × 512 array of 32bit floats, where
each float is a measure of diffraction intensity. The diffraction intensities vary
by orders of magnitude based on the distance to the center of the image, so we
evaluate model performance on two scaling functions: one that takes a logarithm
of all values and one that takes a logarithm and adds brightness according to
the distance from the center. We will refer to these scaling functions as “log”
and “middle-out”.

c© Springer Nature Switzerland AG 2020
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Fig. 1. Left: Percentage of the training set by SG. Right: CDF of SG representation,
excluding SGs not seen in the training set. The top 20% of labels represent over 80%
of the training set, which is a clear indicator of class imbalance.

To determine how much brightness to add for the second scaling function,
we randomly take a sample of 10,000 intensities for each distance to the center
(rounding distances down an integer). To efficiently and uniformly sample the
data, we create a mapping from integers to points for each of the 362 integral
distances from the center. Then we sample 10,000 integers from each of these
mappings to produce a set of 362 × 10, 000 (filename, h5 group, x, y, z) tuples
that represent the sample space. We visit the h5 files in sorted order to efficiently
sample by minimizing the number of disk seeks1. Figure 6 shows the distribution
of this sample. From this data, we compute the linear regression of the log inten-
sities as a function of distance from the center (excluding data with a distance
exceeding 250) at multiple percentiles. Then, we add intensity to each pixel of
each image according to the pixel’s distance from the center, where the added
intensity is the negative average of slopes from the above linear regressions.

Figure 2 shows the outputs of the two image scaling functions. In contrast
to log-scaling, middle-out-scaling brings out more details along the edges of
the image, at the cost of increasing what appears to be the noise floor. We
expected middle-out to outperform log scaling because normalizing the data at
the edges could lead the convolutional filters to activate more uniformly across
the image. However, we found image classifiers achieve very similar accuracies
on both scaling functions, so we proceed with the simpler log-scaling for the
remainder of the paper.

1 On a HDD with a max sustained read rate of 210 MB/s, this sampling of 550GB of
data took 90min, which is within 50% of the theoretical speed. We also evaluated
online streaming algorithms for calculating distributions, but found them to run
significantly slower than scheduling the exact points to sample ahead of time.
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Fig. 2. Left/Middle/Right: no/log/middle-out scaling applied to the CBED stack for
Fe8 Ni4 P4 at 100 keV. Without scaling, there are orders of magnitude difference in
signal between the center of the slice and elsewhere, making classification difficult.
Compared to log scaling, middle out scaling brings out more detail at outer parts of
the image: the second band for the left slice is much more visible with middle-out
scaling. However, more background noise is introduced as a consequence. Resnet-based
image classifiers perform similarly under log and middle-out scaling functions.

2 ML Algorithm for Space Group Classification

In this section, we apply many standard techniques in modern CNN-based image
classifiers to develop a strong baseline ML algorithm for SG classification. We
start with a robust pretrained resnet-50 model and incrementally tune the train-
ing pipeline (focusing on the model architecture, data augmentation, and opti-
mizer parts) to improve validation accuracy.

Most of the exploratory work was done on a single Nvidia GTX 1080 GPU,
and many of the design decisions in training are motivated by the available
hardware. Specifically, we aimed for a maximum training time of 12 h for any
particular model with a target of <4h, to allow for rapid iteration. Unless other-
wise indicated, all accuracy and loss numbers given are based on a model trained
on the training set and tested against the validation set.

2.1 Transfer Learning

Our initial approach is to utilize transfer learning to train a resnet34 [1] model
on stacked CBED images, that were downsized from 512 × 512 to 128 × 128 for
an input image size of 3× 384× 1282. We start with a resnet34 model that was
pretrained on imagenet, replace the final fully connected layer with adaptive
pooling, batchnorm, dropout, and fully connected layers, as recommended by
fastai for transfer learning [4]. We freeze the pretrained resnet34 parameters
and train with cross-entropy loss using an AdamW optimizer [6] and one cycle
learning rate annealing [9] for 10 epochs at a max learning rate of 10−3. We
then unfreeze those parameters to train the full model for 10 epochs at a max
learning rate of 10−3.

This initial approach yields 53.0/71.3% top-1/5 accuracy, with training and
validation losses of 0.012/3.3. The extremely low training loss and significant
difference between training and validation losses indicates that this approach
overfits the training set. We also worry that the model is not making full use

2 The intensities are replicated across the 3 color channels to satisfy the input to the
pretrained model.
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of all three slices and is just lazily looking at a subset to memorize the training
data. To mitigate these issues, we proceed to train a classifier on individual slices,
and combine model outputs by averaging softmax activations, a standard test
time augmentation method.

The split classifier approach yields a raw 43.2/60.9% top-1/5 accuracy on
individual slices, with training and validation losses of 0.093/3.8. Averaging the
outputs of the three slices of input together improves the top-1/5 accuracy to
55.5/71.5%. Going forwards, all reported accuracies will be for predictions made
on the averaged outputs. The low training loss indicate that simply using a
deeper/wider/larger model will not improve generalization accuracy. To quickly
try out new approaches, we retire transfer learning in favor of tabula rasa learning.

2.2 Tabula Rasa Learning

By no longer doing transfer learning, we lose the pretrained convolutional fil-
ters, but that is acceptable since 1) the given dataset is fairly large with over
500k images (considering each slice as a separate image) 2) the CBED patterns
are very different compared to the imagenet domain. In exchange, we gain the
flexibility to tune the architecture and a 3x speedup in training by using a single-
channel model.

We modify the resnet34 architecture to accept a single channel image, and
reduce the width of each layer by a factor of 64/20 = 3.2. Model parameters are
initialized with Kaiming initialization [2], followed by LSUV initialization [7].
Then we train using a LAMB optimizer3 [11] with one cycle learning rate
annealing for 50 epochs4 at a max learning rate of 5 × 10−2, yielding an accu-
racy of 52.64/69.67% top-1/5 accuracy5, with training and validation losses of
0.034/7.4. In comparison to transfer learning, training loss is lower and accuracy
is lower, which is a sign of overfitting as the model no longer starts from the
robust pretrained convolutional filters.

To counteract overfitting, we consider using rotation, mixup [12], and random
erasure to augment the data. We rotate on the resized 128× 128 images and use
bicubic interpolation6. Rotational augmentation is also used at test time if and

3 For tabula rasa learning, we use a LAMB optimizer (instead of AdamW) to avoid
needing to tune discriminative learning rate hyper parameters for the early network
layers.

4 The increase in epochs counteracts most of the speedups from moving to a single-
channel model, but we found that we could not train to a similar accuracy with a
lower number of epochs at a higher learning rate.

5 We trained 5 models with different initial random seeds, but otherwise identical
parameters, and this reported accuracy is the average of those 5 model accuracies.

6 Resizing during the training loop turned the CPU into the bottleneck and signifi-
cantly slowed the training cycle down with low GPU utilization. Nearest neighbor
and lanczos interpolation were also considered: nearest neighbor interpolation lead
to lower accuracy. Lanczos interpolation lead to similar accuracy, but was slower to
compute.
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only if it was used during training7. Random erasure is done with probability
80%8 and using the default PyTorch 1.5 hyperparameters. Table 1 shows mixup
and random erasure data augmentation lead to the highest accuracy. Rotational
augmentation leads to a decrease in test accuracy in each scenario; this could
be explained by 1) the CBED scans are taken from a canonical perspective so
rotated images are not representative of the test set 2) the rotation interpolation
adds noise to the training set.

Table 1. Table of model top-1 accuracy with various data augmentation combinations.
All models were trained for 50 epochs at a max learning rate of 5 × 10−2. Rotational
augmentation actually leads to a decrease in model accuracy, which may be explained
by CBED scans being taken from canonical perspectives.

Rotation Mixup Erasure Top-1 Acc Top-5 Acc Training loss Validation loss

F F F 52.72 69.50 0.034 7.4

T F F 50.69 67.26 0.096 5.5

F T F 56.31 73.22 1.3 2.7

F F T 56.35 71.47 0.28 4.7

T T F 53.66 71.20 1.6 2.9

T F T 54.19 72.09 1.9 2.8

F T T 57.07 73.80 1.5 2.6

T T T 53.00 71.74 1.9 2.8

Using mixup and erasure augmentation improves top-1/5 accuracy to
57.24/73.98%9. We proceed with mixup and random erasure data augmentation
to train a resnet50 model, which improves accuracy to 57.89/74.89%. We also
find that introducing a dropout layer (p = 50%) before the final fully connected
layer slightly improves accuracy to 58.34/74.38%.

Additionally, we try the resnet-C/D10 modifications proposed by [3], and
replicate their findings that resnet-C outperforms resnet-B with accuracies of
58.35/74.89% and resnet-D outperforms C with accuracies of 58.67/75.02%.

We also evaluate larger models via deepening, widening, and adding resnext
grouped convolutions [10]. Deepening the network with the resnet101 architec-
ture slightly increases the accuracies to 58.95/74.80%. However, widening the

7 Rotational augmentation with 72 copies at 5◦ rotations leads to an approximate
1.0/1.3% increase in absolute top-1/5 accuracy at test time, relative to training with
rotational augmentation but testing without any augmentation.

8 We also considered random erasure with probability 50% and 100%, and 80% lead
to the highest validation accuracy.

9 These figures differ slightly from the table since they are averaged across 5 identically
trained models, whereas the table is just a single model.

10 The above resnet models use the default Pytorch architecture, which is considered
resnet-B.
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network and adding resnext grouped convolutions lowered accuracies. Figure 3
summarizes the impact on top-1 accuracy of the evaluated modifications.

At this stage, we have applied many general modern techniques in training
image classifiers with diminishing returns, so we use the resnet101-D with a 50%
dropout layer (and mixup/random erasure data augmentation) as our baseline
model and turn our attention to label imbalance.

Fig. 3. The impact on top-1 accuracy of the evaluated modifications. Each modification
was trained 5 times from different initial random seeds, and the blue bars represent
the mean top-1 accuracy. The black bars represent ±1 standard deviation of noise
across the 5 samples. Probability Flow (discussed in Sect. 3) significantly improves
top-1 accuracy, relative to many other well-established architecture modifications. We
only train Probability Flow once because it relies on an ensemble of over 100 classifiers,
making it less sensitive to any particular initial random seed (and also more expensive
to train). The consistent accuracy of all the probability flow variations demonstrates
the overall robustness of this approach.

3 Overcoming Label Imbalance

As discussed in the Exploratory Data Analysis section, the top 20% of SGs
represent over 80% of the training data, so there is significant label imbalance.
Traditional label imbalance techniques improve recall of minority labels by effec-
tively increasing the cost of an incorrect minority prediction in the loss function.
This is commonly achieved by either directly weighting the loss function or arti-
ficially increasing the representation of minority labels in the training set [5].
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However, the approach of boosting recall for minority labels is inappropriate
for this data challenge’s goal of a high overall accuracy; we do not want to opti-
mize recall for any particular SG at the expense of another group. Figure 7
shows that over half of the errors for the above resnet101-D model are for
groups with good representation in the training set, so simply increasing the
loss weight for underrepresented SGs will likely increase those errors. Use of a
weighted loss function (such that weights are inversely proportional to training
set label representation) sharply reduces top-1/5 accuracy to from 59.07/73.95%
to 0.00/0.05%, because of the large weights applied to the long tail of rare SGs.

3.1 Probability Flow

We introduce a novel technique for handling label imbalance that we call Prob-
ability Flow (PF). With PF, we train a primary classifier that predicts SG with
cross entropy loss11. Additionally, we train

(
n
2

)
binary classifiers12 (BC) that

predicts one of two SGs, for each pair of SGs. When testing an input, we run
the primary classifier on the input and record the top-k predictions and their
probabilities. Then for all top-k predictions, we run the

(
k
2

)
BCs to get pair-

wise probabilities, which are then used to refine the top-k probabilities from the
primary classifier, as described in Fig. 4.

Training all
(
200
2

)
BCs is computationally expensive, so we train

(
20
2

)
classi-

fiers for the top 20 most represented SGs in the training set. We note that this
technique is particularly effective for imbalanced datasets because training a few
classes leads to good coverage of the validation test space. We also evaluate the
use of a weighted loss function when training the BCs, such that class weights
are inversely proportional to representation in the training set13. Figure 5 shows
model top-1 accuracy as a function of how many SGs we train BCs for, when
refining the top-5 predictions. We observe greater robustness when using the
weighted loss functions so we proceed forwards with the weighted BCs, which
yields a top-1 accuracy of 59.36% with 15 groups and λ = 75%.

We also analyze the impact of multiple flow cycles and find that for k = 5 and
using

(
15
2

)
BCs for the top 15 groups, two flow cycles of λ = (50%, 65%) yields

a top-1 accuracy of 59.38%, a minor improvement on a single cycle14. Figure 9
shows the accuracy landscape as a function of λ. For k = 4, the best results are
with 14 groups and flows of (35%, 40%); k = 3: 12 groups and (25%,30%); k =
2: 12 groups and (10%, 20%).

11 The above resnet101-D model can serve as this primary classifier.
12 We use resnet50-D models for the binary classifiers (with the above data augmenta-

tions) with cross entropy loss. We decided against using resnet101-D for the binary
classifiers to reduce compute costs.

13 Specifically, the weight per class is (mean samples per class) × (number of class
samples)−1. The first term is a constant that does not mathematically change the
weighting function, but is included for numerical stability.

14 Because the improvement from one to two cycles is minor, we do not explore the
impact of three or more flow cycles.
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Fig. 4. An example of how PF refines pairwise probabilities. Here, we have the
top-n = 3 classes (A,B,C) with relative probabilities in the top left as out-
putted by the main model. The BCs are run on (A,B), (B,C), (C,A) and
give probabilities of pAvB, pBvC, and pCvA. Let pA, pB, and pC repre-
sent the initial probabilities. Then, pA′ = λ (pAvB)(pA+pB)+(1−pCvA)(pA+pC)

2
+

(1 − λ)pA, pB′ = λ (pBvC)(pB+pC)+(1−pAvB)(pB+pA)
2

+ (1 − λ)pB, and pC′ =

λ (pCvA)(pC+pA)+(1−pBvC)(pC+pB)
2

+(1−λ)pC give the updated probabilities (top right),
where λ is a parameter for controlling how much probability is flowed. After redis-
tributing probabilities in this example, B has the highest probability so it would be
promoted as the model prediction. Intuitively, we can think of a probability flow refine
step as taking the probability for each predicted class, scaling it down by λ, splitting it
among the other n− 1 classes according to the binary classifiers’ predicted ratios, and
redistributing the splits. Figure 8 gives a Python implementation for the general case.

Fig. 5. PF top-1 accuracy when refining the top-5 predictions as a function of the
number of SGs that BCs were trained for, and as a function of the flow factor λ. We
observe that using a weighted loss function leads to greater robustness: doing so yields
lower accuracy variance, higher average accuracy, and higher max accuracy; The max
top-1 accuracy of 59.36% is observed at 15 groups and λ = 75%.
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In many cases, we do not have binary classifiers for all of the top-5 classes
from the main classifiers. We can still apply BCs in those cases with an iterative
fallback testing approach: we use the k = 5 PF parameters if the top 5 predictions
are in the top 15 groups, falling back to the k = 4 parameters if the top 5
predictions are in the top 14 groups, and so on. This iterative fallback approach
improves accuracy to 59.44%. Figure 3 shows the impact of PF on top-1 accuracy,
relative to other ML techniques and Fig. 10 shows the impact of PF on F1 scores
across all the SGs. The modifications do not significantly change PF accuracy,
which is a good signal of PF robustness and generalizability.

All BCs are trained with the same learning rate parameters, and there is
significant variation in the training loss trajectory. This variation indicates that
there is room for improvement by fine tuning learning rates for the binary clas-
sifiers based on analysis of the training loss trajectories.

Probability Flow shares some similarities with Outrageously Large Neural
Networks [8], but primarily differs in some key areas: 1) the subnetworks use an
explicitly defined gating functions and merging functions instead of a learned
one and 2) we explicitly train biased binary classifiers and a main classifier.

4 Conclusion

We develop a machine learning algorithm to train a crystallographic space group
classifier that uses many modern CNN-based image classification techniques to
achieve a top-1/5 accuracy of 60.40/76.95% on the test set15. We then apply
Probability Flow, a novel ensemble technique for handling label imbalance, which
improves top-1 accuracy to 60.79%16.

4.1 Future Directions

All of the models were trained on 128 × 128 scans, but the raw data has 16×
more data with 512 × 512 dimensions. The additional resolution could allow
the model to learn pick up finer details such as Holz lines to better discrimi-
nate between SGs. Training on the full-sized images can transform compute into
greater accuracy. Additionally, the data pipeline used converts the raw 32bit
floating point intensities into a grayscale 8bit png, which truncates the lower 24
bits and clamps maximum values. It is expected that a pipeline directly feeds
the h5 array into the model (without losing information by converting into a u8
int) will perform better.

15 All models were retrained on both the training set and validation set.
16 We use weighted BCs, run two flow cycles of λ = (50%, 65%), and use iterative

fallback starting with k = 5, which we found to work the best on the validation set.
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The CBED data also contains additional information that can be used for
multi-task prediction, which has been shown to improve accuracy in other set-
tings. Retraining the models for multi-task prediction would incur a multiplica-
tive cost on top of all the binary classifiers that were trained, which we did not
pursue due to the limited compute. However, we surmise that multi-task training
will not cannibalize any of the training techniques, and therefore will provide
another method to convert compute into accuracy.

We also notice that not all dimensions are equal: the main classifier is sig-
nificantly more accurate on the first slice than the second or third slice. We
tried training separate models for each dimension, but observed lower accuracy
on each dimension than with a single classifier trained on all dimensions, and
believe this is due to overfitting on the smaller training set. It may be worth-
while to apply transfer learning to create separate classifiers: train a model on
all slices, then treat that as a pretrained model to train separate models for the
separate dimensions.

A key issue we faced was with the model overfitting to the training set, and
we needed strong data augmentation to overcome overfitting. Another way to
avoid overfitting is to train an autoencoder and then a classifier using transfer
learning on the autoencoder’s encoded state. This may obviate the need for
mixup and random erasure data augmentation.

We have only scratched the surface of the PF technique and there are many
unexplored extensions, such as 1) are there better refining functions? 2) does
training binary classifiers with binary cross entropy loss and “null” examples
improve accuracy? 3) are there more effective secondary classifiers? 4) can we
apply ideas from [8] such as learning a gating/combination function?

A Appendix
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Fig. 6. Log of intensities by distance from the center at 1/50/99/99.9/99.99 percentiles.
At all percentiles, there is a decrease in log intensity as a function of distance. The
sharp dropoff at 255 is related to the fact that radius of the circle embedded in a
512 × 512 square is 256, and all intensities beyond 255 represent data in the corners
outside the circle.

Fig. 7. Graph of the number of classification errors by SG as a function of how well
represented the SG was in the training set. On the left y-axis, the blue dots represent
individual SGs and the blue line is a linear regression of the number of errors as a
function of SG representation: there is a strong positive relationship between training
set representation and number of errors, which is explained by the strong correlation
of label representation across the training and validation set. On the right y-axis, the
green line represents the CDF of the number of errors. Over half of the classification
errors are for the 22/200 SGs that represent over 1% of the training set.
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from typing import Dict , L i s t , Tuple , Union

import torch

def p r ob ab i l i t y f l ow (
b a s e p r o b a b i l i t i e s : L i s t [ f loat ] ,
# pa i r w i s e p r o b a b i l i t i e s i s map o f (A, B) : pAvB ,
# map l en g t h shou ld be N choose 2 , and A < B
p a i r w i s e p r o b a b i l i t i e s : Dict [ Tuple [ int , int ] , f loat ] ,
p c t f l ow : Union [ f loat , L i s t [ f loat ] ] ,

) :
n = len ( b a s e p r o b a b i l i t i e s )

f low mat = torch . z e r o s (n , n)
for a in range (n ) :

for b in range (n ) :
i f a == b : continue # diag s are c a l c u l a t e d in outer loop
i f a < b : p = 1 − p a i r w i s e p r o b a b i l i t i e s [ ( a , b ) ]
else : p = p a i r w i s e p r o b a b i l i t i e s [ ( b , a ) ]
f low mat [ a ] [ b ] = p / (n−1)

f low mat [ a ] [ a ] = 1 − f low mat [ a ] [ : ] . sum( )

i f isinstance ( pct f l ow , f loat ) : p c t f l ow = [ pc t f l ow ]
ps = torch . t en so r ( b a s e p r o b a b i l i t i e s )
for λ in pc t f l ow :

ps = λ ∗ ps @ flow mat + (1−λ) ∗ ps
return ps

Fig. 8. Python implementation of Probability Flow. Figure 4 gives a diagram of the
idea for n = 3 and some intuition for the calculation.

Fig. 9. PF top-1 accuracy with two flow cycles. X axis is the λ for the first flow cycle,
and Y axis is the λ for the second.
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Fig. 10. F1 score of the space groups, by training set representation. Each point repre-
sents a single space group, and space groups with a precision or recall of 0 are shown in
the plot with a F1 score of 0. Blue points are F1 scores with a single main resnet101-D
classifier, and orange points are F1 scores with PF with two flow cycles and iterative
fallback. PF improves the F1 score for 9 of the top 15 space groups, with an average
change of 0.0022.
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Abstract. Convergent Beam Electron Diffraction (CBED) images are
2D diffraction patterns created through the interaction between the fired
electron and the atoms of a crystalline structure. Due to the absence
of geometric mapping between three-dimensional structures and two-
dimensional projections in this process, traditional image processing
methods cannot classify CBED images into crystallographic space groups
with high accuracy. The problem gets exacerbated by the class imbal-
ance in the dataset. To effectively bridge the gaps in our understanding
of solid-state crystalline structures, we must build a classifier capable
of classifying diffraction patterns such as CBED images into crystal-
lographic space groups while addressing the class imbalance. In this
project, we explore the sources and nature of classification difficulties
to gather insight into building a robust classifier. We first built some
naive classifiers on the subset of classes by augmenting ResNet50 in var-
ious schemes. We developed a novel multi-level classification technique,
called Trickle Down Classifier (TDC) to address the class imbalance in
scientific datasets. TDC consists of multiple levels of subset classifiers.
At each level, TDC trains a classifier to allocate the samples into a sub-
set of classes. TDC forwards samples missed by a component classifier
at a particular level to the next level classifier. For the top 20 classes,
the TDC performs at an estimated 34% accuracy compared to a naive
classifier’s 14% accuracy.

Keywords: Data imbalance · Crystallographic space group · Deep
learning · High-performance computing

1 Introduction

Accurately identifying the crystallographic space groups of materials is a crucial
factor in material development and analysis [9]. Understanding the properties
of solid-state crystalline structures can benefit from analyzing Convergent Beam
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Electron Diffraction (CBED) patterns. Accurate classification of CBED patterns
into crystallographic space groups (configurational symmetry in space) reveals
the crystal’s critical properties since the structure of a crystal determines its
physiochemical properties in large part [10,11].

Determination and classification of material structures during electron
microscopy experiments have the potential to enable new discoveries and anal-
yses. However, currently, the field of material science research lacks advanced
deep learning based techniques to solve classification and data imbalance prob-
lems for scientific datasets. In this research, we aim to use deep learning based
methods for image classification to build space group classifiers to bridge the
gap in our understanding of the solid-state crystalline structures.

We address the problem of classifying CBED images into 230 crystallographic
space groups. This classification task faces challenges from multiple sources. The
CBED images are created using electron beams passing through atoms of a crys-
tal. The complicated diffraction patterns make the classification task challeng-
ing as traditional image recognition techniques do not perform well enough with
CBED images. Moreover, the large volume of the dataset (500 GB) and the class
imbalance in the dataset where some classes are more representative than others
make the classification task more difficult. When all the classification categories
in the dataset do not have approximately equal representation, then classification
performance decreases significantly [1]. The end goal of our classifier is decoding
material properties using deep learning. Unidentified crystals can be classified
into one of the space groups to help understand the properties of that material
using our proposed techniques. Our novel hierarchical classification technique
will also be useful to researchers in any field for tackling overall data imbalance.

To address the associated challenges, we performed exploratory data analysis
on both CBED patterns and material properties to summarize data character-
istics. We also explored different ML algorithms for space group classification
of CBED data and implemented proper ML techniques to overcome data/label
imbalance and show how it affects the performance of the ML algorithm.

Dataset. The dataset consists of multidimensional images that are simulations
of electron diffraction patterns. Laanait et al. [12] generated CBED patterns
from over 60,000 solid-state materials that represent nearly every known crystal
structure using multi-GPU and multi-node electron scattering simulation codes
on the Summit supercomputer at Oak Ridge National Laboratory.

1.1 Problem Definition

We have identified three challenges associated with this dataset and the classi-
fication task.

The first issue associated with this problem is that CBED images are not
usual two-dimensional orthogonal projections of three-dimensional objects cre-
ated by passing visible light rays. Instead, when electron beams pass through
atoms of a crystal, a complicated diffraction pattern emerges from the interac-
tion between the toms and the electron beam. Unlike regular images, there is no
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straightforward geometric relationship between the crystals and corresponding
CBED images.

The second issue is the class imbalance in the dataset. The dataset has sig-
nificant class imbalance with the majority of the classes having only a handful of
examples while around 30–40 classes have hundreds to thousands of examples.
Making a good classifier that can assign correct labels to the examples from the
under-represented classes is difficult.

The third problem is that the dataset we are working with is too large for a
single computational unit.

1.2 Proposed Approaches

Our proposed approach for solving these three problems are— (1) Using universal
function approximator to address non-geometric mapping of CBED images– we
use deep learning models for dealing with the problem intrinsic to CBED images.
(2) Developing a novel classifier called Trickle Down Classifier for addressing the
data imbalance issue, and (3) Using 480 V100 GPUs from Summit supercom-
puter for tackling the big data aspect of the problem.

1.3 Outline of the Paper

In Sect. 2, we present our exploratory data analysis to discover the nature and
the implications of class imbalance in the dataset. In Sect. 3, we explore the
viability of deep learning based classifiers as a universal function approximator,
where the function of interest maps CBED images to crystallographic space
groups. In Sect. 4, we present TDC and other proposed approaches to tackle
the class imbalance in the dataset. In Sect. 5, we document our effort to scale
out the classifiers using Summit nodes. Section 7, we discuss the limitations of
our approaches, and in Sect. 6 we discuss our plan for completing the proposed
approaches.

2 Exploratory Data Analysis

We have performed an exploratory data analysis to understand the nature of the
data and the potential imbalances across classes. We inspected three datasets,
train, test, and dev. Though there are a total of 230 classes, these three datasets
have examples from subsets of the classes (Table 1). Only 121 classes have non-
zero examples across three datasets.

Table 1. Number of classes with non-zero examples across datasets.

Dataset Train Test Dev Train ∩ Test ∩ Dev

Number of Classes 200 140 145 121
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2.1 Class Frequencies for All Non-Zero Classes

Figures 1, 2, and 3 show distribution of the classes with at least one example
in each of these datasets (train, test, and dev). The classes are sorted by their
frequencies.

Fig. 1. Frequency distribution of 200 classes in training dataset.

Fig. 2. Frequency distribution of 140 classes in test dataset.

A good number of classes don’t have any examples in these datasets. The fre-
quency drops exponentially, and a majority of the classes have very few examples.
This imbalance should make classification of those classes relatively more diffi-
cult than the top 20/30 classes since classifiers biased toward over-represented
classes tend to have better training accuracy.

2.2 A Closer Inspection into Better Represented 20 Classes

We looked into the top 20 highest represented classes from all three datasets to
see if the same classes are represented proportionally across datasets.

Figures 4, 5, and 6 show distribution of top twenty classes in each of these
datasets (train, test, and dev). The top 20 classes are not exactly same across
three datasets, nor they are in the exact same order (Figs. 4, 5 and 6). However,
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Fig. 3. Frequency distribution of 145 classes in dev dataset.

Fig. 4. Frequency distribution of top twenty classes in training dataset.

Fig. 5. Frequency distribution of top twenty classes in test dataset.

Fig. 6. Frequency distribution of top twenty classes in dev dataset.
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if we take the intersection of the three sets of top 22 classes from three datasets,
we find 20 common classes.

The top 20 classes that are across three datasets are 1, 2, 129, 4, 5, 8, 9, 139,
12, 11, 14, 15, 166, 62, 63, 194, 216, 221, 225, and 227.

3 Universal Function Approximator to Address
Non-Geometric Mapping of CBED Images

CBED images are a non-geometric mapping of 3D structures to 2D diffraction
patterns. Hence, traditional computer vision approaches that leverage geometric
projections of objects are not very useful in classifying CBED images into space
groups. Neural network-based detection systems are commonly used to provide
traditional image processing and object recognition [4]. We explore Deep Learn-
ing (DL) based classifiers to classify CBED images since DL models are known
to be universal function approximators [13].

We built basic classifiers based on ResNet50 [8]. We modified the output
layer of ResNet50 to build a classifier with our choice of the number of classes.
We considered three schemes to use the ResNet50 model.

Feature Extraction. In this scheme, we use a pre-trained ResNet50 model
(trained on ImageNet dataset) and modify its output layer. Then we train the
model by starting parameter weights from the weights of the pre-trained model.

Fine Tuning. In this scheme, we modify a pre-trained ResNet50 model as the
previous scheme. Instead of relearning for all the parameters, we freeze all param-
eters at the pre-trained model’s values and only learn the new parameters asso-
ciated with the final layers.

From Scratch. In this scheme, we take a fresh ResNet50 model, modify its output
layer, and train the model using our dataset from random initialization.

We propose to use all three approaches for the top 5, 10, and 20 class classifier.
However, for the time constraint, we were able to complete only one or two
schemes.

3.1 Top Five-Class Classifiers

Feature Extraction. Figure 7 shows training and validation accuracy for top 5
classes in ten epochs. We achieved a maximum of 37% validation accuracy. A
random classifier will achieve 20% validation accuracy on average.

3.2 Top Ten-Class Classifiers

Feature Extraction. Figure 8 shows training and validation accuracy for top 10
classes in ten epochs. We achieved a maximum of 35.4% validation accuracy. A
random classifier will achieve 10% validation accuracy on average.
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Fig. 7. Top five class classifier using feature extraction method.

Fig. 8. Top ten class classifier using feature extraction method.

3.3 Top Twenty-Class Classifiers

Feature Extraction. Figure 9 shows training and validation accuracy for top 20
classes in ten epochs. We achieved a maximum of 6.43% validation accuracy. A
random classifier will achieve 5% validation accuracy on average. So, a model
achieved for the top 20 classes using a feature extraction scheme is almost as
bad as a random classifier.

Fig. 9. Top ten class classifier using feature extraction method.
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From Scratch. Figure 10 shows training and validation accuracy for top 20 classes
in ten epochs. We achieved a maximum of 11.2% validation accuracy. A random
classifier will achieve 5% validation accuracy on average. So, a model achieve for
top 20 classes using from scratch scheme is twice as good as a random classifier.

Fig. 10. Top twenty class classifier by training a modified ResNet50 model from scratch

3.4 Summary of the Classification Performances

Table 2 summarizes the best classification accuracy for various subset classifiers.

Table 2. Best classification accuracy achieved using different schemes.

Subset size Training accuracy Validation accuracy

5 92.9% 37%

10 95.8% 35.4%

20 96.5% 14%

While DL models are successful in classifying samples into a small number
of well-represented and balanced classes, these models do not perform as well
when the classes are significantly imbalanced 1. For example, in the five-class
classifier, the class imbalance is low, so the classification performance is higher.

4 Trickle-Down Classifier (TDC) to Mitigate Data
Imbalance

Through our explorations described in Sect. 3, we observed that DL models per-
form well in classifying samples into a small number of well represented and
balanced classes. So, instead of analyzing the whole dataset at once by training
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a single model, it might be beneficial to perform incremental analysis. One of
the three guidelines for exploring big data analytics proposed by Dash [5] is to
perform incremental analysis on data through the innovation of domain-specific
merging methodologies. While we can perform incremental analysis on the small
group of classes at each increment by training one model for each increment, the
challenge is to combine the results in a meaningful way [6]. One way to combine
the results could be establishing a sequence among these incremental classifiers
in a way such that whenever an earlier model fails to classify an example, a later
model can come into play.

Using this insight, we developed a novel classification approach TDC for
dealing with imbalanced data. The issue of imbalanced data for classification
problems arises when the classes are inequally-represented. Class-imbalance is
a pervasive obstacle for classification problems in scientific datasets across all
disciplines.

Through our exploratory data analysis phase (Sect. 2), we observed that a
few classes have a large number of samples each, while a large majority have a
very small number of samples each. It will be easier to classify a sample from the
first group of classes compared to the second. We propose the novel Trickle Down
classifier, which will utilize multiple simple classifiers in a cascade of classification
tasks.

G1

G2

G3

Fig. 11. An example grouping of top 20 classes for TDC.

We first sort the classes by the number of samples in descending order. Then
we group consecutive classes with a roughly similar number of samples (Fig. 11).
We use this grouping to build multiple levels of subset classifiers, where each
level classifies the corresponding groups. The unclassified samples are assigned
to a dummy “Rest of the World (RotW)” class and sent downstream to the
next classifier level. This downstream flow of unclassified data is where the novel
approach gets its name—“Trickle-down Classifier”.

For now, we have used similar frequency ranges by visually inspecting into
the distribution to group this data. We group classes into several sub-classes
according to their cardinality (number of representative samples for the class).
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For generalization purposes, we can use some statistical clustering (e.g., groups of
classes that have frequency with a maximum of five percent standard deviation
within the group). Different levels of TDC consists of a different number of
classes.

Figure 11 shows a tentative grouping where we include the four most frequent
classes with 8000 or more samples (G1). We build a five-class (class 1, 2, 3, 4,
and 5–20) classifier C1 to decide whether a test sample falls within the first four
classes or not. The fifth class denotes that the sample needs further classification
using less frequent class; we will mark such samples as rejected. Then we group
the next five classes (G2) having 5000–7999 samples each. We build a six-class
classifier C2 to classify the samples rejected by C1. We build an 11-class classifier
(C3) for the remaining group of 11 classes (G3). An example rejected by classifier
C1 will be passed down to C2, and an example rejected by C2 will be passed
down to C3.

Fig. 12. Proposed Trickle Down model.

Figure 12 illustrates this approach. The benefit of the top-level classifier’s
ability to classify within the most frequent classes reduces the error for less fre-
quent classes. Since, less frequent classes collectively work as a collective negative
class for the classifier built for most frequent classes, error due to class imbalance
is reduced.

Classification Performance. Table 3 demonstrates the three component classi-
fiers’ (C1, C2, C3) classification performance in terms of validation accuracy.
The last row shows the estimated validation accuracy of the TDC classifier.

Classification performances of the three component classifiers are 75.9%,
22.7%, and 15.7%, respectively. The number of validation samples in these three
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Table 3. Classification accuracy of the TDC classifier.

Level Classes Validation sample size Validation accuracy

1 1–4 5280 75.9%

2 5–9 3440 22.7%

3 10–20 10029 15.7%

TDC 1–20 18749 ≈ 34%

levels are 5280, 3440, and 10029 respectively. So, an estimated accuracy of the

trickle-down classifier is
0.76 × 5280 + 0.23 × 3440 + 0.16 × 10029

5280 + 3440 + 10029
≈ 34% for

the top 20 classes.

5 Scaling Out the Classifiers and Hyper-Parameter
Selection

Since training ResNet50 model and its variants can take hours to days on a
single CPU, we needed to scale out the classifiers. We empirically determined
that a batch-size of 480 tentatively gives the best training performance. So, we
distributed the training workload across 480 GPUs so that one GPU can process
one image at any given time. We used 80 Summit nodes to run these classifiers
with a batch size of 480. We used Horovod [15] for distributed deep learning and
its communication. Junqi et al. [18] identified and described the best practices
for scaling large-scale deep learning applications on Summit and we utilized some
insights from their work.

Mini-Batch Size: We observed that increasing the mini-batch size beyond 480
in the distributed deep-learning results in diminishing validation accuracy. We
assigned one CBED image per GPU, which brings the number of nodes to 80 (6
GPU per node).

Learning Rate: We used a similar base learning rate as Imagenet training (0.01)
for our training. We also experimented with a slower learning rate without much
change in the training performance.

Software Platform: We implemented our classifiers using PyTorch and built our
classifiers based on PyTorch-Horovod example. We used Horovod for managing
communication in distributed deep learning.

6 Future Work

In this section, we discuss other approaches for dealing with data imbalance that
we aim to implement in the next phase of this research.
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Using other Performance Metrics. Rather than only depending on traditional
classification accuracy, we can explore the following performance measures to
get more insight into the model’s accuracy.

1. Using the default performance metric (accuracy) and modified loss func-
tion might be beneficial for dealing with imbalance. We are using neural
net/decision tree-based classifiers. The loss function can be customized based
on the frequency of the classes.

2. Confusion Matrix: A breakdown of predictions into correct and incorrect pre-
dictions in a tabular format.

3. Precision: Fraction of the correct positive prediction count and the total pos-
itive prediction count.

4. Recall: Fraction of the correct positive prediction count and the total positive
example count.

5. F1 Score (or F-score): A weighted average of precision and recall.

Composite Algorithm. Decision trees perform well on imbalanced data. For image
classification, combining two outstanding classifiers, like CNN and XGBoost [2],
might be a good idea. We can use CNN to extract compact numeric features
and XGBoost as a classifier [14].

Application of Resampling Techniques. We aim to explore resampling techniques
to balance the dataset. There are two main methods to sample examples fairly
from imbalanced classes:

1. Adding/generating copies of samples from the under-represented class, which
is called over-sampling (e.g., synthetic minority over-sampling technique
(SMOTE) [1,7]).

2. Deleting instances from the over-represented class, called under-sampling [17].

7 Conclusion

We developed a deep learning based technique for predicting material’s crystal
structures and introduced a novel approach for solving class imbalance in scien-
tific datasets. Our contribution will be impactful to the materials science field
and provide a new hierarchical classification technique to researchers in any field
for tackling overall class imbalance in scientific datasets.

In this paper, we describe our novel approach towards developing a universal
classifier for crystallographic space groups. We have identified potential sources
and implications of class imbalance in the provided dataset, which provided us
with insights into how to tackle the imbalance. To overcome the problems arising
from non-geometric projections in the scientific data, we used deep learning
models as universal function approximators. We proposed a novel classification
technique called Trickle Down Classifier (TDC) to tackle class imbalance in the
data. We also proposed re-sampling techniques and a composite of deep and
traditional “shallow” machine learning models to solve this problem. We have
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provided a partial implementation of TDC, which we aim to complete in the next
phase of the computation. The CBED dataset is large in volume ( 500GB), and
training a large model such as ResNet50 with this large dataset required using
high-performance computing (HPC) resources. We scaled out our deep learning
models using 480 V100 GPUs of the Summit supercomputer.

So far, we have achieved promising results with the novel approach. To realize
the full potentials of the TDC technique, we aim to complete the entire pipeline
and test the completed model with a robust test dataset. We also plan to exper-
iment with bucketing the classes at different levels to get the best performance.
To build component models, we used a feature extraction scheme on ResNet50;
we also aim to build these models using two other schemes. Moreover, we plan
to experiment with other deep learning models such as ResNet18 and VGG16.

Decision tree classifiers such as XGBoost [2] tend to perform better in the
presence of an imbalanced dataset. We plan to construct features using a CNN
and then train an XGBoost model using these features. However, XGBoost is
not very scalable as of yet (some extension runs on single GPU, but it is yet to
run on multiple nodes). We aim to overcome this problem by inventing a com-
pute pipeline that can distribute workload across different MPI processes and
then combine the results. We also plan to extend our work to address classifica-
tion problems in other research areas where data sources are heterogeneous and
real-time classification is crucial for providing responsive actions (i.e., IoT-based
smart built environments) [3,16]. Overall, our work will be useful in handling
data imbalance in any research area by providing a novel hierarchical classifica-
tion technique.

Source and Supplementary Materials

The source code, data and supplementary materials explaining the solution
approaches are available at https://bitbucket.org/sajal000/spacegroup.

Acknowledgement. Part of this work has benefited from a collaborative work with
our friends and collaborators Shubhankar Gahlot, Rohan Dhamdhere, and Mohammad
Alaul Haque Monil.
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Abstract. This paper addresses Challenge 3 of the SMC data challenge
by leveraging data-driven tools to understand the relationships between
our built environment and nature, and how this relationship impacts
energy consumption. It presents detailed results to the research questions
posed, along with the rationale for the tools used and limitations of the
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1 Introduction

From the urban heat islands (UHI) of New York City [1], to Chicago’s noto-
rious wind-tunnel effect [2], the adverse impact of urban morphology on local
climate is undeniable. Recent studies [3] have uncovered links to extreme weather
events such as severe thunderstorms, and heat/cold waves. Despite growing
concern [4,5], scientific understanding of this phenomenon - both cause and
effect - remains limited [6]. This is in part due to the modeling complexities
involved, sometimes requiring exascale computing resources [7]. By leveraging
recent advances in data science and machine learning, this paper presents a
computationally inexpensive, data-driven understanding of the coupling between
nature and urban infrastructure. A survey of the literature is discussed in the
following section to highlight previous advancements in this research area.

2 Literature Review

The coupling between urban climate and energy has long been the subject of
research interests. Vallati et al. [8] for example explored the impact of urban
climate on the heating/cooling demand of standalone vs. urban building types.
Their findings indicated that urban buildings required notably less energy for
heating. This may be explained by the urban heat island (UHI) effect - a byprod-
uct of the pervasive use of heat-absorbing materials such as steel and concrete.
c© Springer Nature Switzerland AG 2020
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This idea served as the basis for work conducted by Arifwidodo et al. [9] which
found strong correlations between the presence of UHIs and increased electricity
expenses. Subsequent research focused on the impact of urban morphology [11],
climatic variations [10], and population trends [12], all of which found correla-
tions between urban morphology, local climate gradients and energy consump-
tion patterns.

From a modeling perspective, researchers at the Oak Ridge National Labo-
ratory [13] conducted studies focused on how variations across weather datasets
impact micro-climate simulations, and ultimately energy consumption forecasts.
New et al. [7] then leveraged discrete building energy modeling at urban-scale
to inform on the dynamics between urban form and climate. While represent-
ing significant progress, the computationally intensive nature of these research
efforts (some requiring the world’s most powerful supercomputer at the time
[7]) deter from widespread use. This presents an opportunity to develop com-
putationally inexpensive alternatives. To this end, this paper leverages building
energy consumption as an alternative lens through which to investigate the com-
plex multi-scale coupling between nature and urban infrastructure. Specifically,
it makes a contribution by investigating the role urban buildings play in shaping
the climate around them through the data-driven analysis of variations in their
annual energy consumption.

The remainder of the paper details how this was achieved and is structured
as follows. Section 3 begins with an overview of the scope of study and an under-
standing for the type of data used. Section 4 follows with detailed solutions to
the research questions posed. It details the exact approaches used, discusses the
results and highlights their limitations. Section 5 concludes with a discussion of
the broader impacts and future potential of the presented work. Source code
and a comprehensive set of all generated visualizations and animations have
been open-sourced, and is accessible via our Github page (link in Appendix).

3 Initial Data Collection and Processing

Generated by the Oak Ridge National Laboratory (ORNL) [14], the pri-
mary dataset describes the weather, buildings, and energy consumption of the
“Chicago Loop” - the second largest commercial business district (CBD) in
the US, located in downtown Chicago. The dataset is composed of three sub-
datasets, the first of which (herein called Building-Data) contained building IDs,
longitude and latitude coordinates and structural height for 334 buildings (see
Fig. 1a). The second dataset (herein called Energy-Data) contained the annual
energy consumption of each building. Finally, the third dataset (herein called
Weather-Data), provided high resolution, 90-meter simulated weather data for
the year 2015, at 15-minute intervals (with known gaps toward the end of each
month). In addition to the provided datasets, our team sourced additional open
datasets to strengthen our data pipeline. Namely, we obtained a building foot-
print dataset [15] to aid with building visualizations, and an energy bench-
marking dataset from the Chicago Data Portal [16] which provided Energy-Star
ratings of each building.

https://bit.ly/3hGEwo0
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Combining our external datasets to Building-Data proved rather challeng-
ing. Despite having similar building references, the long/lat coordinates differed
significantly between datasets. By spatially analyzing our data using the Folium
python library [17], we made a fascinating finding. We discovered that the build-
ing coordinates provided in Building-Data utilized a Lambert Conformal Conic
projection (with 90-meter resolution grids). Consequently, the coordinates in
Building-Data referenced grid cell centroids, as opposed to real world build-
ing locations. To address this problem, our team scripted a nearest neighbor
algorithm which computed and assign the nearest real world building (using
Euclidean distance) to each centriod location. Our approach was validated by
randomly sampling nearest neighbor assignments and visually verifying them
using two popular web tools, namely Google Maps [18] and Koordinates [19].

(a) Building footprint visualization (b) Building overlaid with weather sensors

Fig. 1. Data exploration of building (yellow) and weather (red) dataset. (Color figure
online)

Exploring the Weather-Data dataset revealed a total of 880 sensor points.
By combining this data with Building-Data, we discovered that the weather
data covered a land area about twice the size of that occupied by our buildings
(see Fig. 1b). We narrowed the scope of our weather data to match that of our
buildings in terms of land area (please refer to Appendix for more details). We
created a local SQLite database for the resulting dataset to enable faster data
retrieval. With respect to Energy-Data, we found data parsing to be particularly
challenging because the dataset contained extraneous data in the form of null
values. This was addressed using standard data cleaning practices.
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3.1 Data Visualization Pipeline

We developed a visualization pipeline (see Fig. 2) to streamline the spatial visu-
alization of our data and results. For any visualization task, we first extracted the
necessary WKT (Well-known text) data contained within our SQLite database
and transformed it into a shapefile using Mapshaper, an online geographic infor-
mation system (GIS) service. Next, we converted the shapefile into a Python
friendly GeoJSON file format and visualized it using the Kepler.gl python library.
In terms of hardware, our team relied on personal laptops to execute the pipeline,
the most capable of which had a Core i7 processor and 16GB of RAM. Having
briefly discussed the dataset, the next section presents the research questions
asked of this dataset, along with our detailed responses for each.

Fig. 2. Data visualization pipeline

4 Research Questions

4.1 Are There Interesting Variations in the Weather and Building
Energy Use Data for the Geographic Area?

Approach: Using our visualization pipeline, we mapped all building footprints
against multiple energy and weather variables. Color was used as a relative
measure for comparisons between buildings, with lighter color shades represent-
ing lower use/intensity, and darker shades representing high use/intensity. This
gradient-based, color-to-intensity relationship is maintained across all visualiza-
tions presented in this paper. For visualizations involving weather, we developed
a multithreaded Python script that efficiently summarized Weather-Data into
daily descriptive statistics (including standard deviation, variance, and mean)
and saved the output as a JSON file. We then narrowed the features of our
weather dataset using personal intuition. Although approaches such as Princi-
pal Component Analysis (PCA) are best suited for feature selection tasks, we did
not feel comfortable using it owing to a limited understanding of how it works.
This represents an area for improvement in future work. Based on our intuition,
we selected temperature, wind speed, long-wave radiation, and relative humid-
ity as the features of interest for this work. To visualize potential micro-climatic
effects, we further narrowed our scope to only days which displayed significant
variance across our selected features. This was motivated purely by computa-
tional expense as an exhaustive exploration would have proved computationally
infeasible given our limited computational resources.
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Variations in Building Energy Use: Our analysis revealed several vari-
ations across both energy use and weather. An interesting trend - which we
termed “two halves of Chicago” - emerged when we compared both electric-
ity usage and intensity across the entire building stock. According to Fig. 3a,
buildings in the northern half generally used more electricity compared to the
south. This relationship is, however, reversed with respect to electricity inten-
sity (see Fig. 3b). This implies the existence of two unique urban morphologies,
with the north having predominantly tall buildings (hence lower electricity inten-
sity), and the south having relatively shorter, less efficient buildings. Visualizing
building heights across the dataset confirmed our suspicions. Please refer to our
Github page (link in Appendix) for a more comprehensive set of all generated
visualizations for this problem.

(a) Total electricity use (b) Total electricity intensity

Fig. 3. Comparing relative electricity use and intensity - darker shades represent
greater use/intensity

Variations in Weather : Figure 4 illustrates weather gradients observed across
Temperature (F), Wind speed (m/s), Long-wave radiation (W/m2) and Relative
humidity (%). We discovered that weather gradients typically emerged from one
predominant direction and spread across the map. From these plots, it is evident
that micro-climatic effects exist and it would be interesting to apply machine
learning algorithms in future work to recognize patterns in these variations and
begin to correlate them directly to features of the urban morphology.

Limitations of solution: Our analysis relied heavily on physical building vari-
ations (e.g. building height) owing to a lack of adequate granularity in our energy

https://bit.ly/3hGEwo0
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Fig. 4. From left to right - temperature, wind speed, long-wave radiation, and relative
humidity visualizations. Darker shades represent greater intensity.

dataset. Additionally, the reduced scope of our weather analysis limited our find-
ings. Future iterations will look to leverage high-performance computing (HPC)
resources along with advanced data structures such as HDF5 to enable efficient,
detailed analysis. We hypothesize that leveled mappings of annual weather data
at 15-minute intervals with energy use data of equal resolution will yield very
interesting results regarding the connection between building energy use and
micro-climates.

4.2 Which Buildings in the Study Are Most Sensitive to Weather
Effects?

Approach: Addressing this question required an understanding of energy use
variation across short term events (i.e rain) and seasons (i.e. winter). However, a
major shortcoming of our dataset is that it aggregated energy use over an annual
cycle, hence it lacked the granularity we needed. This presented an opportunity
for “out of the box” thinking. Our resulting approach made one key assumption
- that the ratio between heating and cooling energy for all buildings is constant,
irrespective of building size. While improbable, we concluded that for any build-
ing to violate this relationship, it must be because its sensitivity to weather
forced it to use more cooling or heating energy than the “normal ratio” requires.

To test this hypothesis, we divided each building’s HVAC consumption based
on end use (heating and cooling) and plotted them against each other. Surpris-
ingly, our assumption was indeed correct. Figure 5 (leftmost plot) shows a strong
linear relationship between heating and cooling across the entire building stock.
Note that this accounts for all building sizes. It also revealed some weather-
sensitive outliers. By plotting the building footprints of the outliers, we noticed
that the majority of the outliers were located in the bottom half of our map (see
middle plot of Fig. 5). This underscored the impact of urban morphologies on
energy use. For deeper insights, we then combined our findings with the energy
audit dataset we had sourced externally. This revealed that several of the build-
ings in our outlier set had low Energy-Star ratings (lighter color shades), further
strengthening our conclusions that these buildings are most sensitive to weather
(see rightmost plot in Fig. 5).
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Fig. 5. Identifying buildings most sensitive to weather

Limitations of solution: Although weather sensitivity is indeed one of the
potential drivers behind the presented results, it is also likely that our findings are
the result of inefficient/faulty HVAC systems in these buildings. Should granular
energy data become available in the future, our approach to this problem will be
to identify days with extreme weather conditions and compare each building’s
energy usage on these days to a derived building baseline. This will enable us to
perform sensitivity analysis to identify buildings with strong sensitivities.

4.3 How Can the Data Best Be Divided into Subsets for Meaningful
Analysis and Visualization?

“Two Halves of Chicago”: As highlighted earlier, the Chicago Loop can
be separated into two halves based on urban morphology, with the north end
comprising mainly of high rise buildings and the south having a comparatively
shorter cityscape. Buildings in the north had lower energy intensity compared
to the south. Energy intensity is an efficiency metric measured by dividing total
annual energy consumed by a building (in gigajoules) by the building’s total
gross floor area. We hypothesize that given granular building energy use data,
meaningful micro-climate analysis can be performed to compare the performance
of similar buildings across the geographic divide.

Unsupervised Hierarchical Clustering : We also discovered natural clusters
within the dataset using the Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) algorithm, an unsupervised learning app-
roach. This was motivated by the fact that energy consumption data is typically
noisy, hence using an algorithm suited to such data was crucial. Additionally,
the algorithm treats cluster size as a hyper-parameter, minimizing the chance
of induced clustering bias. Using this algorithm, we were able to segment our
dataset into 8 main clusters as illustrated in Fig. 6. Although we did not explore



486 S. Inneo et al.

further with this approach, we found it to have a lot of potential, especially as
we introduce additional datasets to the data pipeline.

Fig. 6. Building clusters generated using unsupervised learning

Extracting Workdays and Types of Buildings: During our preliminary
data analysis, we explored the idea of segmenting based on building function.
Moreover, we were interested in sub-setting energy output according to work-
days, weekends and holidays. We believed this to be a good line of inquiry given
that the Chicago Loop is a commercial business district. This idea motivated
additional interest into further sub-setting based on building zoning type (i.e
residential or commercial). Although we managed to source relevant datasets
to enable all of these, we eventually abandoned these efforts owing to the lack
of energy data granularity. The possibility of revisiting this idea using detailed
energy data, however, presents a promising avenue for future efforts.

4.4 How Does Energy Use in Each Building Change Throughout
the Year?

Approach: Our analysis revealed a clear variation between the energy consumed
during the winter months (requiring heating) and the summer months (requiring
cooling). It should be noted that Fall and Spring seasons were neglected in this
study. On average, buildings in the dataset were found to use 15 times more
energy for heating than cooling. Given that heating primarily occurs in winter,
we conclude that energy usage peaks during the colder months. We followed this
by calculating the normalized weather energy use intensity (EUI) as well as the
average energy demand per heating/cooling day. We also computed the average
energy demand per heating/cooling day, illustrated in Fig. 7.

Analysis: Figure 7 reveals a trivial, yet important trend - the larger the build-
ing, the more energy it uses for heating/cooling (left plot). Additionally, we
compared energy intensities of heating (natural gas) and cooling (electricity)
(see right plot). From this, we discovered that not only do high rise buildings
use comparatively more natural gas than electricity (measured in gigajoules),
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Fig. 7. Energy demand per heating/cooling day(left) and EUI plot (right)

but they tend to be more efficient (hence the tighter cluster of dark colored
points in Fig. 7). In contrast, not only did low rise buildings rely more on elec-
tricity than natural gas, but most importantly, they exhibited irregular trends
with respect to efficiency (see larger spread of lighter colored circles). This was
a very interesting finding and potentially points to high rise building benefiting
from newer construction and HVAC systems.

4.5 How Is Energy Use Different During the Coldest/Hottest
Months as Compared to During Those of Less Extreme
Temperature?

Based on the findings presented in Fig. 7, we assume that the coldest months
have the highest energy usage, while the hottest months have comparatively
lower energy usage (measured in gigajoules). Despite this, the months of extreme
temperature will still likely exhibit higher energy usage than in the more temper-
ate months. An analysis of energy used for heating and cooling compared to the
overall energy used revealed that some buildings used as much as 69% of their
annual energy on heating and cooling (see Fig. 8). These particular buildings will
see a significant decrease in the least extreme months.

4.6 Are There Any Interesting Visualizations that Illustrate the
Changing Dynamics of the Simulated Urban Environment?

Figure 9 illustrates the urban heat island effect projected over a 3D represen-
tation of the Chicago Loop. This figure provides a number of key takeaways.
It visually confirms the morphological differences between the two halves of
Chicago. But more importantly, it highlights man-made heat zones. Each build-
ing is shaded based on its heat rejection energy data. As we can deduce, a
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Fig. 8. Breakdown of HVAC energy use over total energy expenditure

heat-zone emerges between the high rise buildings in the north, in stark con-
trast to the south buildings. Future work will look to leverage wind directional
patterns to observe impacts on temperature gradients across the Loop.

Fig. 9. Visualizing the urban heat island effect using heat rejection data

5 Conclusion

Using detailed data analysis and visualization, the results presented in this paper
shed light on some of the complex relationships between nature and urban infras-
tructure in the downtown Chicago area. Computationally inexpensive in nature,
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the approach used, along with its findings serve to provide an exploratory step
prior to more detailed energy modeling and analysis. It also sets the stage for use
of high performance computing resources with more granular data to uncover
even more hidden insights and relationships.
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APPENDIX

This bounding box used to graphically bound our weather data was devel-
oped using the following coordinates: (41.858452, -87.641479), (41.858452,
-87.617188), (41.891693, -87.641479), (41.891693, -87.617188).

Source code and comprehensive set of visualizations and animations have been
open-sourced and can be accessed via our Github page.

Github Link - https://bit.ly/3hGEwo0
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Abstract. This paper tackles Challenge 4, ‘Computational Urban Data
Analytics’, of the 2020 Smoky Mountains Conference Data Challenge.
Specifically, we design and implement an analysis and visualization
framework to study traffic emissions across time and space in a urban
setting. We use our framework to qualitatively and quantitatively ana-
lyze the influence of urban layout on traffic flows in the Chicago Loop
area. Our findings allow us to investigate the relationships between traffic
congestion, building distributions, and vehicle emissions. Insights from
our framework can provide communities with decision-making tools for
urban design and smart cities.

Keywords: Vehicle positions · Road network · Building footprints ·
Vehicle-building mapping

1 Introduction

Urban traffic flows are complex phenomena influenced by a diverse range of
factors, such as road network topology, the spatial layout of buildings within
the urban environment, as well as human habits and patterns, among others.
These traffic flows, in turn, not only consume large amounts of energy, but
also impact their local environment by emitting exhaust heat and gases into
their surroundings. However, accurately modelling these relationships can be
challenging, as it requires many disparate data sets to be not only reconciled,
but unified with an interdisciplinary approach. Nonetheless, we believe that an
effective solution for fusing these separate data sets into a single coherent analysis
of traffic patterns could help guide efforts towards reducing traffic emissions and
improving traffic energy efficiency.

Each year, Oak Ridge National Laboratory (ORNL) and the Smoky Moun-
tains Computational Sciences and Engineering Conference (SMC) publish a
series of data science challenges, known as the SMC Data Challenge, as an open
competition in which large data sets are sponsored and students can register to
submit a paper after researching a given challenge. In exploring Challenge 4,
‘Computational Urban Data Analytics’ [2], we develop a methodology to under-
stand the relationship between traffic patterns and emissions. Specifically, we
use analysis and visualization techniques to study traffic emissions across time
c© Springer Nature Switzerland AG 2020
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and space; we analyze the influence of urban layout on traffic flows; and ulti-
mately we combine these insights to investigate the relationships between traffic
congestion, building distributions, and vehicle emissions.

A key problem we are tasked with solving in this challenge is reconciling
disparities between data sources. These differences must be addressed to respond
to the questions posed by the challenge authors, characterize patterns in the
data, and correlate emissions with other variables. In answering the questions
set forth by the challenge authors, we hypothesize that if we can develop a useful
metric of traffic congestion, we can show a correlation between congestion and
emissions. During our research, we develop a suite of data analysis, visualization,
and validation tools to aide in the preparation and analysis of the originally
provided datasets. The data preparation process can then be universally applied
to similarly-structured data.

Through statistical analysis, we test for a correlation between measured traf-
fic congestion and emissions data, and show the existence of a statistically-
significant relationship; however, we also reveal inherent limitations to this type
of analysis, which can be explored and accounted for in future work.

The rest of this paper is organized as follows: Sects. 2 and 3 characterize
the data sets provided to us and outline the preprocessing techniques applied
to prepare them for our statistical analysis, respectively; Sect. 4 discusses the
methods and models we developed to relate the data; Sect. 5 provides a qualita-
tive and quantitative analysis of the emissions heat map and the vehicle-building
mappings when compared to emissions quantities; and Sect. 6 summarizes our
methods, the artifacts produced during the research, and our results.

2 Characterization of Original Data

Table 1 summarizes the original data provided as part of Challenge 4 together
with the data characteristics (i.e., spatial layout, sampling rate, sampling fre-
quency, and description). For all of these datasets, the region of interest is,
specifically, the Chicago Loop area, which is also the central business district for
the city of Chicago.

2.1 Traffic Data

The original vehicle positions are obtained from the TRANSIMS traffic sim-
ulator [5], which incorporates a fine-grained microsimulator for modelling the
movement of individual vehicles. The simulation is run for approximately 24 h,
and snapshots are taken at 30-second intervals to record the position of every
active vehicle as a (road, offset, direction) triplet, where a road corresponds to
an edge in the road network and a unique series of line segments in our road net-
work dataset (see Sect. 2.3), while an offset and direction specify a point along
those line segments.

The challenge organizers performed an additional pre-processing step before
publishing the dataset. The vehicle positions were converted to Universal Mer-
cator Transform (UTM) coordinate pairs by interpolating along roads, as in [1].
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Table 1. Description of the original datasets available for the data challenge.

Dataset Spatial Layout Sampling Rate Sample Period Description

Traffic Points 30 s 24 h Sampled vehicle positions from the

TRANSIMS traffic simulator over

the course of a day

Emissions Per-Road Hourly 8 days Hourly aggregated emission totals

from the MOVES-Matrix emissions

simulator over multiple days

Roads Line Segments N/A N/A Sequences of line segments

describing local roads

Buildings Polygons N/A N/A Polygons describing local building

footprints

These coordinates were then included alongside the raw simulation output as an
alternative representation of vehicle positions.

Notably, this simulation reflects commutes to work, but not commutes from
work; this asymmetry impacts our analysis, as discussed in Sect. 5.2.

2.2 Emissions Data

The original emissions data are generated using the MOVES-Matrix simulator
[3], with data spanning two separate simulations: one covering a morning com-
mute on January 9, 2017, and another covering full 24-hour spans from July 4
to July 10, 2017. This data contains measurements of heat emitted from vehi-
cles, simulated on the level of road segments and aggregated on an hourly basis.
For our analysis we only use total aggregated emissions for each link and hour,
recorded in the dataset in millions of British Thermal Units (MMBtu).

Similarly to the traffic simulation, the emissions simulations only reflect com-
mutes to work, and not commutes from work.

2.3 Road Network

A dataset covering local roads (also referred to as ‘links’) within the area of
interest was made available by the challenge organizers. In this dataset, each
road is described as a sequence of connected line segments, with each segment’s
endpoints represented as latitude-longitude coordinate pairs. A unique link ID is
also given to each road, which is used to associate vehicles and emission quantities
to individual roads.

2.4 Building Footprints

The building footprints are based on the Microsoft’s US Building Footprints
dataset [4]. This dataset consists of building footprints identified from satellite
imagery using a neural network and transformed into simple polygons in a two-
step process. The full set of building footprints identified within the state of
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Illinois was pre-filtered by the challenge organizers to include only buildings
within the region of interest, producing a final dataset containing approximately
2,600 buildings.

3 Data Preparation

The original traffic simulation data came with incorrect or unfeasible locations
for some vehicles. We processed the data to make sure that the vehicles locations
are all realistic in the context of our study. To this end, we implemented an
algorithmic approach that allowed us to (1) gain an understanding of where
vehicles were located at various points in time and (2) adjust those vehicles with
unrealistic locations to realistic ones.

The approach consists of two steps. First, by overlaying the vehicle positions
on a map of the area, it appears that there are clusters of vehicles in unrealistic
locations such as water or railways. Because of this, we use a distance threshold
to measure how many vehicles throughout the entire data set are disassociated
with their specified link. We set our visualization scripts to render plots as images
with resolutions of 400× 550 pixels, so we use 30 pixels as the threshold to
determine if a vehicle is too far from its link. We apply this threshold to the
distance from the link to the vehicle on both the x and y axis, but not to the
Euclidean distance. The reason for only evaluating distances on the x and y axes
separately is that we also check for coordinates outside the bounds of the image.
This algorithm determines that there are no instances of x-coordinates that are
out of bounds, while 16.5% of entries have a y-coordinate where this is the case.
On further inspection, instances where a coordinate’s distance from the link is
beyond the given tolerance are almost exclusively in the y-coordinate column in
the simulation data. Only 1.2% of the entries have a x-coordinate that exceeded
the threshold, while 48.0% have a y-coordinate that did so.

The second part of our approach is the adjustment of the y-coordinates.
Because x-coordinates appear to be generally reliable, the process we use to
resolve this discrepancy between the vehicle coordinates and the coordinates of
their associated link using as follows:

1. If we consider each link a line that naturally extends infinitely in both direc-
tions, we assume that the vehicles should be aligned in a way that places
them on this line.

2. We use the x-coordinates to compute new y-coordinates such that the new
ordered pair obeys the slope and y-intercept derived for each link’s line inter-
pretation.

3. In instances where a vehicle’s x-coordinate is not between the link’s endpoints,
we move the x-coordinate to the nearest endpoint so that the new y-coordinate
is not be above or below the endpoints. This is necessary as there naturally
will be links that are nearly vertical so an x-coordinate beyond the bounding
box of the link would project the y-coordinate even farther away in some
cases.
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As we believe this new data set is more reliable in the examination of traffic
patterns, we base our vehicle-to-building mapping algorithm and final correlation
analysis on this new data as discussed in Sects. 4.2 and 5.2, respectively.

4 Methodology

As outlined in the challenge, there are often inherent disparities in the sources
of large data, and so our methods in addressing these questions ultimately aim
to produce associations, or mappings, between the datasets we analyze. These
procedures allow us to relate the data to overcome these disparities and produce
meaningful analyses of the relationships between variables present across this
data.

4.1 Simplification of Building Data

We simplify our original building dataset by reducing each building into an
sequential ID, bounding-box, centroid, and area. Aside from speeding up the
vehicle-building mapping methods described in Sect. 4.2 and enabling the build-
ing emission accumulation described in Sect. 4.4, this also allows us to store
buildings in a flat, tabular representation (such as a CSV file).

4.2 Vehicle-Building Mapping

To study how traffic emissions impact nearby buildings, we adapt an agent-based
approach [1], in which individual vehicle agents are mapped to nearby buildings.
Mapping methods used in such an approach must be efficient and scalable with
respect to both agent and building count: for example, our data includes over
100,000 total agents in an area containing more than 2,600 buildings. The orig-
inal cited approach uses a quadtree-based method to recursively subdivide the
mapping region into small cells based on a splitting criteria; our method instead
organizes the buildings within the mapping region into a k-d tree, where each
building is keyed by the centroid of its footprint, and then uses this tree to
efficiently search for the building closest to each agent.

Our implementations of both methods output sets of (vehicle, building, dis-
tance) tuples, with one tuple for each vehicle. While developing this implemen-
tation, we also developed tools for visualizing these mappings and identifying
buildings with many associated vehicles; one such visualization is shown in Fig. 1.

We found that the k-d tree method is slightly more straightforward to imple-
ment, and also avoids an issue with the quadtree-based method, where buildings
that are seemingly close to an agent are separated from it by unfortunate cell
boundary placement and thus excluded from consideration for mapping. Our
method, in contrast, always finds the nearest building for each agent, though
perhaps at the cost of more comparisons; this has not turned out to be an issue
for our dataset size. Both methods were readily parallelizable, and experiments
with our data indicate that they have roughly similar performance at our scale.
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Fig. 1. Distribution of vehicle mapping
counts at 10:00. Unfilled outlines indi-
cate buildings with no mapped vehi-
cles.

Fig. 2. Radiated emissions computed
from July 04, 2017 simulated emissions
data.

4.3 Dispersion of Traffic Emissions

The emissions data, as described in Sect. 2, is organized with slightly different
spatial granularity compared to our other data sets: in our data, emissions are
only associated with entire road links, whereas other data (such as buildings)
are described using geographic coordinates. Therefore, we align the emissions
data with our vehicle, building, and road data by discretizing our region of
interest into cells and computing emission quantities for each cell: cells contain-
ing links are treated as being sources that add emissions to nearby cells, and
the strength of these added emissions are inversely proportional to the squared
distance between cells. This process models the dispersal of concentrated heat
emissions from individual roads into the surrounding environment, and a visu-
alization of the resulting heat maps is shown in Fig. 2.

With these heatmaps in hand, we can then associate emissions with other
features in our dataset, such as buildings, for further analysis.

Using these generated heatmaps to begin to characterize patterns in emis-
sions concentrations, we notice there is no obvious variation between different
days in the data. When looking at heatmaps for a given hour on two separate
days under scrutiny, any variation that exists continues to be unaccounted for
visually. Therefore, we also use a metric to determine how different any two
heatmaps are, to investigate this numerically.
In this procedure, we consider each heatmap as a vector of emissions quanti-
ties, and compute the dot products between pairs of heatmaps that are gen-
erated using data from the same hour, but across different days. Numerically,
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this showed there is no difference between any two heatmaps with this criteria.
Figure 3 shows the visual comparison we did prior to developing this procedure.

Fig. 3. Comparison of emission quantities at 10:00, between July 04 (left) and July 06
(right)

What this seems to indicate is that the simulator is configured so that it
does not consider random variations in traffic flows, vehicle density, or individual
vehicles’ exhaust output.

4.4 Association of Emissions to Buildings

In order to measure the local impact of traffic emissions on buildings in our region
of interest, we first compute a per-building emission total by summing radiated
heat emissions from nearby roads, as taken from the heat maps developed in
Sect. 4.3, over the footprint of each building. We then derive emission concen-
trations by dividing each building’s emission total by the area of its footprint;
this accounts for large buildings with more space for accumulating emissions.
For the purposes of our analysis in Sect. 5.2, we focused on studying emission
concentrations rather than non-normalized emission totals.

From these metrics, we identify a clearly distinguishable morning commute
period lasting from 08:00 to 11:59. As shown in Fig. 4, emission concentrations
for this commute period consistently follow a clear log-normal distribution, with
median concentrations close to 103.6 MMBtu/m2; meanwhile, emission concen-
trations for other times of the day tend to be much lower, with medians less
than or equal to approximately 101.1 MMBtu/m2. We could not find an equiv-
alent evening commute period, though this is likely because our simulated data
does not include any work-to-home commutes.
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Fig. 4. Distribution of per-building emission concentrations, measured at 10:00 (top)
and 17:00 (bottom)

Figure 5 shows the aggregated distribution of emission concentrations over an
entire day, with vertical dashed lines indicating median concentration values for
individual hours of the day. The morning commute period can be seen not only
as the sharp peak near 104 MMBtu/m2, but also in the tight cluster of medians
centered in the same location. On the other hand, the more spread out group of
medians between 100 and 102 MMBtu/m2 correspond to data taken from most
other hours of the day.

Interestingly, the data for 12:00 (represented by the lone dashed line near
103 MMBtu/m2 in Fig. 5) proves to be an exception: while emissions at this time
are typically much higher than in the other non-morning hours, it nonetheless
has lower emission concentrations than those seen during the morning commute
period. This uniqueness will be discussed further in Sect. 5.2.

5 Results and Discussion

5.1 Qualitative Analysis of Emission Heatmaps

For a typical day within our emissions data, activity seems to be centered around
the hours of 07:00 to 12:00, with very little to no activity for all other hours.
During these hours, high-activity areas appear to be concentrated in a region in
the west, with hot spots appearing in the northeast and southeast, as shown by
Fig. 2.

To quantitatively analyze the spatial correlation between emissions and vehi-
cle distributions, we develop a visualization that overlaps the heatmap with the
mapping of vehicle occupants to buildings based on data with the same time. The
results show there is increased vehicle exhaust around the buildings that had a
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Fig. 5. Distribution of per-building emission concentrations across the entire day; each
vertical dotted line indicates the median concentration (or equivalently, the mean of
log10[concentration]) for one hour of the day.

greater count of mappings. Figure 6 shows several areas of high occupant density
that also show increased emissions. To measure how strong this correlation was,
we develop a statistical approach that will be explored in Sect. 5.2.

5.2 Quantitative Analysis of Per-Building Emission Concentrations

For our analysis of emission concentrations, we develop linear regression models
predicting building emission concentrations from transformed and normalized
vehicle counts. To be specific, our models take the form:

ŷ = β1

√
xi

Ai
+ β0

where the quantity xi represents, for each building i, the count of vehicles xi

mapped to it; this count is then normalized by dividing by the building foot-
print area Ai, similarly to how building emissions quantities are normalized.
We found that applying this normalization makes our models slightly more con-
sistent across time. β1 and β0 form our model parameters, which we fit using
least-squares. In addition, for each model we compute Pearson correlation coef-
ficients r and two-sided p-values for our estimates of β1.

For each fitted model, we also select an emission concentration threshold for
the purpose of removing outliers; data points with a concentration below this
threshold are not considered when fitting the model. We denote this threshold
in Figs. 7 and 8 with a dotted line, and mark excluded data points using ‘x’s.

During the course of our modelling, we initially considered threshold values of
1, 70, and 150 MMBtu/m2. For the morning commute period, however, threshold
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Fig. 6. Heatmap of emissions overlaid on top of building-vehicle mapping counts.

values of 70 and 150 MMBtu/m2 result in nearly identical models and results; on
the other hand, while a threshold value of 1 MMBtu/m2 fails to eliminate outliers
in data for this period, it is usually the only usable threshold value when fitting
models for other hours, due to the difference in concentration scales between
these two time periods. As such, the rest of this analysis primarily focuses on
models fitted using outlier thresholds of 150 MMBtu/m2.

The models we fit to data from the morning commute period (08:00 to 11:59)
show evidence of a weak positive correlation between normalized vehicle counts
and emission concentrations, with significance at the p < 0.01 level; one of our
regression models for this time period can be seen in Fig. 7. The strength of this
correlation seems to peak around 09:00, as shown in Table 2.

Meanwhile, we found that our models can not be reasonably fit for hours
past 12:00, as our chosen outlier thresholds lead to most, if not all of the data
points for these hours being discarded; emission concentrations for these times
are simply too low and too sparse for our modelling approach. Even a threshold
of 1 MMBtu/m2 typically leads to all but a dozen or so points being discarded
for these hours, resulting in models with wildly inconsistent r- and p- values. As
such, we cannot draw conclusions about correlations between vehicle counts and
emissions for these hours. This sparsity is likely caused by our source data not
reflecting commutes from work, as mentioned in Sect. 2; future work could use a
richer dataset to model this portion of the day and provide further insight.

Finally, although we can fit a similar model to our data from 12:00, as seen in
8, the correlation we found was noticeably weaker (r = 0.119), as is the evidence
supporting it (p = 0.0317). Note that the emissions model for this model has
been set at 1 MMBtu/m2, rather than 150 as for the previously shown models.
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Table 2. Linear regression model results for the morning commute period and 12:00

Time r p

08:00 0.182 p < 0.001

09:00 0.220 p < 0.001

10:00 0.173 0.002

11:00 0.151 0.006

12:00 0.119 0.032

Fig. 7. Regression from vehicle counts to
emission concentrations at 09:00
(r = 0.220, p < 0.01)

Fig. 8. Regression from vehicle counts to
emission concentrations at 12:00
(r = 0.119, p = 0.032)

As previously mentioned, this is due to the lower emission concentrations found
at this time: using a threshold of 150 would lead to our model discarding a large
proportion of the data.

The weaker correlation found at 12:00, along with the lower position of the
points and fit line for 12:00 within Fig. 8, seem to indicate that the data at
12:00 is distinct from both the morning commute hours and the later hours,
and instead exists between these two extremes: although there is still enough
activity at 12:00 to allow for analysis as with the morning hours, emissions
concentrations are lower and more sparse, as with the evening hours. Figure 5, as
discussed in Sect. 4.4, also supports this interpretation, with the median emission
concentration lying in the gap between the two clusters representing the morning
commute period and the evening hours.

6 Conclusions

In the context of the 2020 SMC Data Challenge, in this work we explore Chal-
lenge 4, ‘Computational Urban Data Analytics’ [2], and investigate the relation-
ships between urban traffic flow and vehicle emissions.

As part of our investigation, we systematically characterize and prepare the
datasets provided by the authors of the data challenge; we create a methodology
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to understand traffic patterns and emissions; we develop algorithmic methods
for computing these emissions maps and map both vehicles and emissions to
buildings; and provide open-source scripts for conducting the associated analysis
and visualizations.

From the results of our analysis we can conclude that the volume of traf-
fic flow has a weak positive correlation with emissions around buildings. This
suggests there are additional factors affecting this relationship that could be
addressed in future work. For example, the mappings between individual vehi-
cles and buildings could be improved by taking into account all the buildings
in the area surrounding a vehicle, instead of limiting the association to a single
building. Other improvements could account for other variables, such as building
height or mapped vehicle types, which could affect emission concentrations, both
of which were unavailable factors within our provided data. These, in addition
to environmental factors such as weather and temperature, could yield more
meaningful results.

Our results are based on data that had to be curated from the original
datasets, yet the overall methodology and tools are valid for other datasets or
particular use cases. Future work could validate of our methods with additional
datasets from either real-world sources or other simulation tools.
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Abstract. Understanding human activities and urban mobility patterns
is key to solving many urban issues such as congestion and emissions.
With the abundant data sets available at different levels of fidelity, one
of the main challenges is the sparsity and heterogeneity of data sources.
The integration of such data sources is essential to better inform system
design and community-level strategies. In this paper, we incorporate a
variety of data sources including land use, vehicle emissions and build-
ing footprint to comprehensively visualize and analyze traffic patterns
in the Chicago Loop area. We first implement and compare three differ-
ent nearest-neighbor-search algorithms to determine building occupancy
assignment, and then perform a spatial-temporal correlation analysis of
vehicle emissions focusing on factors such as land use, public transit
and demographic. Lastly, we discuss the traffic characteristics from data
analysis, such as traffic congestion formation and rush hours etc.

Keywords: Vehicle emissions · Traffic patterns · Nearest neighbor
search

1 Introduction

Motivation and Contribution. According to the inventory of U.S. Green-
house Gas (GHG) Emissions and Sinks 1990–2018, transportation accounted for
the largest portion (28%) of total U.S. GHG emissions in 2018 [1]. Amongst all
the sources, passenger-cars contribute to nearly 60%. The majority of the use
cases are for daily commute. Therefore, it is central to understand the commute
patterns of city dwellers, and the integral relationship amongst other factors such
as land use, building occupancy, road network and emissions, to consequently
inform energy-efficient and sustainable community strategies specifically to each
city.

The fundamental problem we address in this paper is the lack of data inte-
gration procedures for city-scale traffic impact analysis. Because of the lack of
direct data sources for traffic impact analysis such as daily commute schedule
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or block-level emissions, and the inconsistency of the fidelity and scale of vari-
ous data sources, we design a workflow (Fig. 1) by (1) developing algorithms to
realistically assign vehicles’ last-seen locations to nearby buildings, (2) preparing
grid-based data that incorporates multiple data sources for regression analysis,
and (3) conducting feature selection and impact analysis for vehicle emissions.
The question of finding the determining factors in the urban areas that con-
tribute to traffic congestion and vehicle emissions is city-dependent, and doing
so could potentially help city planners and policy makers target specific areas
to estimate and reduce traffic-related emissions. In this paper, we focus on the
Chicago Loop area, a major business district in Chicago, IL.

Fig. 1. Workflow for traffic impact analysis.

The main contributions are the following: (1) we estimate a realistic building
occupancy schedule by efficiently assigning vehicle occupants to nearby buildings
using three nearest neighbor algorithms, with our customized metric, nearest end
point distance. We demonstrate numerically the superiority of running time and
accuracy of our approach by comparing it with others; (2) we propose a method
to analyze the impact of city land use, populations, and public transit on vehicle
emissions. We integrate various data sources that contribute to vehicle emissions,
and perform an area-wide correlation analysis on the selected features using a
linear regression model and XGBoost for validation. Specifically, we investigate
the impact of land use, population, building occupancy schedule and weather on
local vehicle emissions; (3) we lastly characterize traffic patterns by locating the
traffic hot spots, popular roads, and rush hours, among others.

Data Sources. Most of the data sources used in this project are provided by
Oak Ridge National Laboratory. The data sources are listed following.

1. Commute data: (1) simulated morning commute vehicle traces data at 30 s
intervals for one day. The data include road segment (link) ID, driver ID
and vehicle speed at each time step. The simulation software is TRansporta-
tion ANalysis SIMulation System (TRANSIMS) [2,3]. (2) schedule data for
morning commute from National Household Travel Survey (NHTS) [4] and
(3) vehicle type distribution data.
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2. Emission data: (1) road-level traffic volumes (aggregated from TRANSIMS
outputs). (2) Road-level emissions generated using MOVES [5], an emissions
simulator.

3. Road network: this data includes link IDs and road type, GeoJSON file of
the road network used for the TRANSIMS and MOVES runs, and definition
of different link types.

4. Building data: (1) building footprints from Microsoft [6]. (2) Land use data
from Chicago Metropolitan Agency for Planning (CMAP) [7], including Geo-
JSON file containing polygon data with land use attributes.

5. Socioeconomic data: (1) Population from CMAP/Census (2010) [8], (2) com-
munity snapshots (2017) [9] and (3) Chicago commute time (2017) [9].

Additional data was collected. The list with corresponding references are pro-
vided below. (1) OpenStreetMap: natural cover data [10], (2) DATA.GOV:
Chicago bus routes and Chicago rail system (“L”) shapefiles [11], (3) Weather
Underground: historical weather data [12], (4) Chicago Data Portal: building
height data, Chicago population by census block, and census block bound-
aries [13].

Related Work. Daily commute has a high impact on city traffic and vehi-
cle emissions. In order to analyze the factors that affect vehicle emissions, we
need to understand the commute behaviors in terms of when and where people
travel to work, based on survey data such as National Household Travel Sur-
vey (NHTS), vehicle traces data and building location information. The highly
spatio-temporally varying commute patterns have posed many challenges to
modeling building occupancy on a high-resolution level. Studies such as [14,15]
develop high-resolution building occupancy models using surveyed time-based
data, which underpin further analysis such as building energy demand mod-
eling. In [16], a realistic building occupancy assignment is accomplished using
a quadtree based approach to allocate agents’ first and last seen locations to
nearby buildings. Our paper uses a similar approach but compares and analyzes
different agent assignment algorithms along with the quadtree.

Integration of other data sources and modeling techniques are also important
to understand the relationship amongst human activities, land use and traffic
emissions. For example, meteorological data [17] and social media data [18] are
adopted to explore the potential influence of human activities on urban traffic
congestion and emissions. Integrated models of land use and transportation are
also applied to study city dynamics [19–21]. All of the related works present
a comprehensive model for evaluating the effect of human activities on cities’
microclimates.

The challenge of assigning vehicle occupants to nearby buildings is essentially
a nearest neighbor search (NNS) problem [22]. There are numerous algorithms to
solve the NNS problem and they are classified into two types: exact methods and
approximation methods. In exact methods, the simplest algorithm is the purely
brute force one, which is the most accurate but most computationally demanding
of all. This running time can be further improved by employing space partitioning
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methods, such as KD-tree and Hilbert R-tree [23], which skip computations on
some branches and increase efficiency. In approximation methods, the quadtree
is widely used due to its superior performance and simple implementation. The
details of the quadtree can be seen in [16].

2 Methodology

2.1 Challenge 1: Algorithms to Assign Vehicle Occupants to
Buildings

We formulate the building occupancy assignment as a nearest-neighbor-search
(NNS) problem. Specifically, we want to assign the last seen locations of vehicles
(given by the simulated vehicle trace data) to their nearest buildings (given by
the building footprint data) [16]. We apply three search algorithms, brute-force,
quadtree, and KD-tree. We compare their performance with respect to efficiency
and accuracy. Regarding the building type, we assume that people work in non-
residential buildings, and filter out residential buildings based on the land use
codes.

We first apply brute-force search algorithm to obtain the baseline running
time and accuracy of the building occupancy assignment. Since this algorithm
finds the exact solution using a double loop: for each agent find the nearest
building, we use the results to benchmark the accuracy of other algorithms.
Secondly, we apply the quadtree algorithm used in [16] to assign occupants
to buildings. We further introduce the KD-tree algorithm to solve the same
problem.

The KD-tree algorithm iteratively bisects the search space and constructs a
tree where the leaf nodes correspond to the building locations and the branch
nodes correspond to the higher subspaces. If the distance between a vehicle and
a subspace is larger than the minimum distance, we can skip this branch of the
tree such that the search efficiency can be improved.

For each of the above three algorithms, we assign vehicles based on three
distance metrics: Euclidean distance (ED), weighted Euclidean distance (WD)
and our heuristic version nearest end point distance (ND). The WD is measured
by multiplying the ED with a weight factor proportional to the inverse of building
area. The detailed definition has been mentioned in [16]. The ND is the distance
from a vehicle to the nearest end point of a building polygon. For vehicle i and
building j , ND (dij) is defined as:

dij = min
k∈Ppolyj

‖ri − rk‖ ,∀i ∈ V, j ∈ B (1)

where V is the set of vehicle last seen locations and B is the set of building
polygons; Ppolyj

denotes the set of points on the boundary of building polygon
j. ri’s are the coordinates of the vehicle location i.

Furthermore, we calculate building capacity by multiplying building size with
per capita area and count the number of overload buildings to compare the
performance of the three distance metrics.
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2.2 Challenge 2: Vehicle Emissions and Correlation Analysis

Data Preparation: Generate Grid-Based Data. We enrich the provided
data with data from additional sources (listed in Data sources).

One of the main challenges in conducting traffic emissions analysis and
exploring the impact of other factors is data reconciliation. Geographical fea-
tures are often based on different scopes, such as points, lines, and polygons. To
address this problem, we first select a target area that fully covers our study
region. Then we introduce a grid-based data integration technique to normalize
and aggregate various data sets into N × N grids as shown in Fig. 2a. Specifi-
cally, the feature variables are aggregated as follows. The population is the total
number of residents in the grid. The inflow population is the total number of
people commute to the grid area each day. The Public transit (bus & rail) and
road types measure the total length of corresponding bus, rail or road line within
the grid. Land use types and natural cover types are the total area of the corre-
sponding type, and the foot print area is multiplied by the number of stories if
the building type information is available.

If one line or polygon intersects with more than one square grid, then we
assume that the corresponding feature is evenly distributed on this line/polygon.
For example, the emission data for a certain square grid is calculated as following:

total grid emission =
∑

all roads

road emission × length of road within grid
total length of road

Fig. 2. Spatial variation of aggregated emission. Darker red color indicates more emis-
sions. The partially enlarged view in (b) shows that even within a small space, there is
a large variation among road links. Thus, the grid-based method as illustrated in (a)
is used to reduce the noise. Note: The dark area on the left of (b) doesn’t look dark in
(a) because roads in that area are actually more sparse and our grids don’t cover some
of the roads with heavy emission due to the difficulty of incorporating spreading road
network into regularly shaped grid. This issue should be minimized when a broader
range of data becomes available.
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Another way to combine all the data is a road centered method, which defines
fixed areas centered around the centroid of each road, and then measures each
quantity within every defined area as the independent variables. However, this
method is not suitable for our case since the emission data is generated by
simulation and contains inherent noise. Emission per unit length is calculated as
road emission
road length and we observe a large variation in this measure even among roads

that are within the same intersection (Fig. 2b). Therefore by averaging all roads
in a specific area, the grid-based method effectively reduces the noise.

Fig. 3. The spatial distribution of each land use and natural cover type. We can see
that different land use type is concentrated in different areas. For example, residential
buildings are concentrated in the south while office is more likely to be seen in the
north.

Regression Model and Feature Selection. Our primary analysis examines
the relationship between vehicle emissions and other factors. We first perform a
multivariate regression analysis by partitioning the study area into 12×12 grids,
and assessing the contribution of each factor to the road emissions nearby. The
first model intends to examine the spatial correlation only, so the time-varying
variables are averaged. For example, emissions for a certain grid are calculated
as total emissions in a day divided by 24 h.

Figure 3 and 4 show land use and natural cover types distribution using kernel
density estimation (KDE) and the spatial correlations among all features within
the study area, respectively. From the correlation matrix (Fig. 4), we notice that
the correlation coefficients between some features (e.g., population and residen-
tial areas) indicate the presence of a strong multicollinearity (Pearson correlation
coefficient ρ ≥ 0.7), which increases the standard errors of the coefficients when
doing regression analysis, and in turn may cause some independent variables
to be not significant. To address this issue, we employ recursive feature elim-
ination(RFE) to repeatedly remove the least important variables. For spatial
correlation analysis of vehicle emissions, we regress the averaged emissions on
other variables selected by RFE using an Ordinary Least Squares(OLS) model.
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Fig. 4. A matrix showing correlation coefficients between variables

Robustness Testing. Since the number of grid cells may affect the corre-
lation results, we test the robustness of the area division by employing three
approaches to validate our result. First, we repeat the same procedure on 8× 8,
10× 10, and 15× 15 grid dividing the same area to check the consistency of the
significance of independent variables. Second, we implement the road centered
method although some variations in feature importance caused by the inher-
ent data noise are expected. Third, we use tree-based XGBoost regression to
calculate the feature importance ranking. The feature importance reported by
XGBoost is the average information gain across all decision trees when the fea-
ture is used as a splitting node. In each robustness test, we also rank the feature
importance of each variable so that we can check whether the variables used in
our primary model remain stable.

Temporal Variation. Since the vehicle emissions and some other variables are
also time-varying quantities, we intend to investigate the temporal correlation
of vehicle emissions as well. To this end, we include features such as weather.
Overall, 94.8% of all roads demonstrate an increase in emission from January to
July which is clearly an evidence of the presence of seasonal effect. However, we
are unable to extract more detailed insights regarding temporal variation. The
reason is twofold: first, the current emission data covers only two very short time
periods (Jan 9th and July 4th to 10th) and the simulated emission data in July
is the same each day. Second, the spatial coverage is too small to include the
diversity of weather conditions. We intend to address the temporal correlation
in future work when a broader range of data becomes available.



510 A. Qu et al.

2.3 Challenge 3: Traffic Patterns Characterization

Traffic Hot Spots, Congestion, and Popular Roads. According to
INRIX [24], a leading traffic analytics company, traffic hot spots are defined
as traffic jams that occur at the same locations along a stretch of road. The
measure we use is based on the idea that traffic state can be reflected by the
average speed. To identify traffic jams, we apply speed performance index (SPI)
formerly developed by Beijing Traffic Management Bureau (BTMB) to evaluate
the traffic condition of each road during each hour [25]. The index, defined as
the ratio between the current speed and the maximum possible speed, can be
applied here. SPI ranges from 0 to 1 with 1 indicating a very smooth traffic
and 0 extremely congested traffic. However, we do not count zero in this study
because zero average speed for an hour is more likely a sign of no vehicle pass-
ing through. According to BTMB, heavy congestion occurs when SPI < 0.25.
In our study of hot spots, we first use k-means algorithm to cluster roads into
20 small groups by their spatial locations and calculate the average number of
occurrences of heavy congestion for each cluster. We also calculate the ratio
between the weekly average speed in a week and maximum possible speed for
each road so that we can identify specific hot spots. Popular roads are measured
by their traffic volume instead of average speed. We aggregate the traffic volume
provided in the simulation data and select the top ranked roads to highlight in
the map.

Travel Time. We pre-process the data to eliminate outliers in two steps. First,
we select all the commute trips from home to work that are less than 2.5 h (as the
rest are obviously outliers, e.g., 10+ hours for a single trip), which cover 99.5%
of all the trips. Second, we only keep the trips that start from home between 5:00
and 13:00 since people typically go to work in the mornings. Then to analyse the
travel time, we divide the time window between 5:00 and 13:00 into 10-second-
intervals. We treat the travel time for each time interval as a random variable,
and calculate the mean and the 95% confidence interval based on the travel time
of trips occurring in this interval.

Busy Times and Comparison with NHTS. To compare the simulation
results and the survey conducted by NHTS, we first average the simulation out-
put from Monday to Friday to compute the average total traffic volume of each
hour in a day. The provided NHTS trip distribution is the same for each day so
it suffices to make comparison on a one-day distribution. Then, we proceed to
obtain the fraction of traffic volume per hour in the busy-time distribution plot
(Fig. 9). Note that the busy-time distribution sums up to 1 overtime, and thus
can be treated as a probability distribution. Therefore, a commonly used mea-
sure, Jensen–Shannon divergence [26], can be used to quantify the resemblance
between two probability distributions. Jensen-Shannon divergence is calculated
as the entropy of the mixture of two distributions minus the sum of the entropy
of each distribution such that a disparity in the two inputs would lead to higher
score.
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Spatial-Temporal Analysis of Speed. We analyze the spatial temporal vari-
ation and summarize our finding in a dynamic visualization. Again, we assume
that zero-speed roads imply zero-traffic so those roads are colored green.

3 Results

3.1 Challenge 1: Performance Comparison of NNS Algorithms

The accuracy of quadtree, KD-tree and brute-force algorithms for building occu-
pancy assignment are shown in the first row of Fig. 5. Both KD-tree and brute-
force algorithms achieve 100% accuracy because they compute the exact solution
to the NNS problem, no matter what distance metric we choose. However, the
accuracy of quadtree only improves when the partition is coarser (i.e., the num-
ber of leaf nodes becomes smaller), and no-split quadtree becomes equivalent to
the brute-force method). In terms of the distance criteria, ND metric can achieve
a higher accuracy than WD or ED, this is because ND metric as in Eq. (1) con-
siders the geometric shape of the buildings and not just the centroids, leading to
a better approximation of the actual distance. The running time of each of three
algorithms is shown in the second row of Fig. (5). Brute-force algorithm has the
longest running time when using ED or ND metric. This is due to the double
loop structure in the brute-force algorithm which requires going through all the
vehicles’ last seen locations and all the building locations to find the nearest
building for each occupant. KD-tree has a consistently low running time for ED
or SD metric, but fails to outperform brute-force when using WD metric. This
is because WD requires reconstructing the search tree when each new vehicle
location is added, which significantly slows down the computational time for
KD-tree. As for quadtree, higher accuracy can be achieved when using lower-
fidelity split, but this also increases the running time. The vehicle assignment
and the overload buildings are shown in the supplementary materials. The total
number of office buildings is 665 and the number of overload buildings is 27,
10, 10 for ED, WD and SD metrics. Considering both the accuracy and the
running time, KD-tree with ND metric consistently outperforms brute-force and
quadtree.

3.2 Challenge 2: Area-Wide Correlation Analysis of Vehicle
Emissions

Regression Analysis. To reduce standard errors caused by feature multi-
collinearity, we first perform a recursive feature selection (RFE) on the grid-
based data. RFE is a method that keeps removing the weakest feature, which
also allows us to evaluate the rankings of features. We find that for 12× 12 grid,
the adjusted R2 is the highest(0.71) when top 13 features are used in regression
model and most of them are statistically significant (Fig. 6). This high adjusted
R2 indicates that a large portion of variance in emission can be explained by the
features chosen by the model.
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Fig. 5. The performance of algorithms based on different distance metrics

Fig. 6. Adjusted R2 increases as more features are added to the model

The regression result (Table 1) shows that the main contribution to vehicle
emissions comes from inflow population, and some certain types of road including
A50 (Vehicular trail, road passable only by four-wheel drive vehicle) and A40
(Local, neighborhood, and rural road, city street), which are positively correlated
with vehicle emissions with significance (p-value) p < 0.001. Rail line length and
vehicle emissions are negatively correlated with p-value p < 0.001, which implies
the important role of Chicago rail system in alleviating road transportation.
One interesting finding is that wood coverage has a strong positive correlation
with emissions. One possible interpretation is that wood coverage represents
urban parks which are often built near city busy corridors. We also want to
emphasize that correlation does not imply causation. Our analysis only explores
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Table 1. Vehicle emissions regression analysis and feature rankings. * and *** represent
p < 0.05, p < 0.001 respectively.

Features Coefficients Feature ranking

Grid-based OLS Grid-based XGBoost Road-centered OLS

Inflow population 62939.816*** 1 2 8

Rail line −52640.761*** 4.75 4.25 2

Bus line 40243.822* 4.75 8 7

Office −35525.439* 10.5 10 9

Water −31460.252* 12.75 15.75 17

Wood 50688.006*** 3.75 7.63 1

A201 27364.166* 10.25 15.13 15

A302 43346.564* 7.5 6 5

A403 70263.346*** 6.75 4.75 4

A504 50938.104*** 5.5 5 3
1 Primary road without limited access, U.S. and state highway
2 Secondary and connecting road, state and county highways
3 Local, neighborhood, and rural road, city street
4 Vehicular trail, road passable only by four-wheel drive (4WD) vehicle

the concurrent land use features on vehicle emissions rather than establishing a
cause-and-effect relationship.

Validation. To further verify our results of feature selection, we generate three
more datasets with different choice of grid size. Then, we calculate the average
ranking of each feature based on RFE. We can see from Table 1 that most features
presented here, especially those with p < 0.001, are consistently top-ranked.
Feature importance with XGBoost model and a road-centered model also reports
similar ranking, as shown in Table 1. We conclude that our regression model is
able to identify the most significant features and the outcome is validated using
other methods.

3.3 Challenge 3: Characterize Traffic Patterns

Hot Spot, Congestion and Popular Roads. The visualization in Fig. 7
shows the traffic hot spots and the frequency of heavy congestion for each cluster
of roads. The number in the circle indicates on average how many hours the roads
around that region are in heavy congestion. The street view images are the six
most popular roads ranked by total volume and this result is largely confirmed
by the street reviews we find online. An interesting finding is that some very
popular roads are not highly congested, which might due to the difference in
road design.

Travel Times. Figure (8) visualizes the variation of commute time departing
between 5:00 to 13:00 of both NHTS and simulation data. We can clearly see
that the mean of the travel time ranges from 0.2 h to roughly 1 h, which is similar
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Fig. 7. The variation of travel times throughout the day

to the commute time 58.5 min from a study by Robert Half [27]. In simulation
data, the travel time is longest around 7 am and slightly shorter afterwards,
possibly because people who have to commute long hours tend to depart early.
The travel time between 8 am and 11 am is typically longer than the travel time
before 6 am and after 11 am, which might be due to the morning rush hours. In
NHTS data, the travel time is highest around 11 am due to the noon peak and
decreases afterwards. There is no increasing travel time from 5 am to 7 am in
NHTS data as in simulation data, which is caused by the simulation error.

Fig. 8. The variation of travel times
throughout the day

Fig. 9. Busy times according to simula-
tion data and NHTS survey
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NHTS Survey Vs Simulation. In general, the simulation has a very similar
trend as NHTS with some minor variations. The Jensen-Shannon divergence
for these two distributions is 0.38, which indicate a relative similarity between
the busy-time distributions. The busy times indicated by both two data sources
agree on the morning rush hours (6 am to 10 am). However, there is a second
peak in NHTS data after 12 pm which is not found in the simulation. In fact,
analyzing on the original simulation data, we find very few trips after 12 pm
compared to the NHTS survey. In addition, we observe some unrealistic speeds
in the simulation setting. We find that there are about 200 roads with average
speeds between 0–1 mph. In fact, excluding the zero speeds, the average speed
for all roads is only 8.53 mph. Moreover, we believe that the traffic volume is
underestimated. For example, as one of the most popular streets, North Jefferson
street is reported to have 8,300 average daily traffic according to Chicago Data
Portal. However, in the simulation, the same street has a weekly traffic that is
only 13,605.

Spatial-Temporal Variation of Speeds. For this part of the analysis, we plot
the speeds on the street map of loop area and generate a GIF to show dynamics
(Fig. 10). Basically this visualization aligns with the previous congestion analysis.
The speeds are lowest during morning rush hours and roads around the city
center tend to have heavy congestion.

Fig. 10. Spatial-temporal variation of speeds. Green indicates high speed or no traffic
while red indicates the opposite. (It may require an Adobe reader to load this GIF.
Screenshots of this GIF can also be found here: Appendix) (Colour figure online)

https://www.maipdf.com/pdf/?email=en3fm9lzcbU/wz
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4 Conclusions

In this paper, we provide a framework for data reconciliation and urban traffic
patterns characterization. Our solutions to the three challenges contribute to the
study of commute patterns and urban transportation systems in the following
ways. First, we develop a fast and efficient nearest-neighbor search algorithm,
KD-tree with nearest-end-point distance metric, to realistically assign the last
seen locations of vehicles to the nearby building. This addresses the lack of
direct data sources such as building occupancy schedule, and provides more
information on when and where people commute to work. Second, we perform
an area-wide analysis of land use, populations and public transit on vehicle
emissions. We identify that the inflow population and road types significantly
correlates to vehicle emissions. These features are validated using an alternative
road-centered data generation approach and a XGBoost model, which produces
a similar feature importance ranking. Temporally, a seasonal effect on vehicle
emissions is observed but further analysis is hindered due to the lack of high
resolution data. Lastly, we explore the traffic simulation data and extract some
interesting traffic patterns. We conclude that overall this simulation setup is
able to reproduce realistic traffic activities. Most of the travel times are realistic.
A good match in busy-time distribution is found between the simulation data
and NHTS survey, and major streets are indeed occupied with more vehicles.
However, the simulation fails to take into account, for example, the commute
back to work after lunchtime that NHTS might indicate.

Some limitations of this study are also worth noting. First, we are not able to
draw any conclusion of the impact of vehicle types on emissions, due to the lack
of diversity in vehicle classifications. Information about vehicle types would also
help us design a more realistic algorithm since the vehicle type might implicate
the building type that the vehicle owner is more likely to work at. Second, the
vehicle emissions analysis focuses on a specific region (Chicago Loop area), and
may not well generalize to other cities. We acknowledge that these limitations
exist due to the scope of this study, and instead we focus on providing a frame-
work of reconciling data of different types, and analyzing emissions using other
more accessible data, which can be applied in broader scenarios.
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Abstract. Besides vehicles, buildings are one of the main energy users in
urban areas. The rate of energy usage of a particular building depends on
features such as human activities, the number of people inside, weather,
and the surrounding landscape. Such complex interactions makes energy
usage of buildings hard to understand. In this work, we analyze the
energy usage of Chicago loop under the effects of several features.
Through our extensive experiments, we explore the connections between
energy usage and these features. Moreover, we proposed an algorithm
that assigns vehicles to buildings by considering three parameters: loca-
tion of the building, its size, and land-use.

Keywords: Urban informatics · Visualization · Vehicle emission

1 Introduction

Global warming is a global challenge for society. It pushes our existence to the
edge of a cliff and fosters consequences such as extreme weather and rising sea
levels. The primary driver of global warming is greenhouse gases, dominated by
carbon dioxide and methane. For this reason, reducing these gases is an essential
task. An oft overlooked factor in energy consumption, US buildings use 39% of
energy and 38% of CO2 emission while the two respective figures for Europe are
40% and 36% [2]. Understanding the energy emission of buildings is crucial.

The nature of energy consumption of buildings is complicated due to a large
number of variables. Firstly, it depends on the number of people inside build-
ings. The more people, the more energy it needs. Secondly, energy consumption
is highly related to the activities of users inside. For example, lighting is around
16% of electricity usage in U.S. commercial buildings. Thirdly, external condi-
tions such as weather play an important role. Buildings use more energy to warm
in winter than fall. Last but not least, traffic is a crucial feature to understand
the energy use of buildings [3].

In order to untangle the complexity of how buildings consumer energy, we
analyzed the data of Chicago loop, the commercial core of Chicago and the sec-
ond largest business district in North America. In this work, we use data analysis
c© Springer Nature Switzerland AG 2020
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and visualization to understand traffic patterns and emissions with respect to
building usage and weather.

Our contributions can be summarized as follows:

1. Proposing a novel algorithm for vehicles to building assignment that takes
into account both the size of the building and its land-use.

2. Utilizing datasets from different sources to study the temporal and spatial
patterns of traffic, weather, and emission.

3. Using GIS tools to make temporal and spatial visualizations in both static
and dynamic formats.

2 Literature Review

In this section, we survey related works to our paper which can be classified into
two categories: i) energy consumption of buildings and ii) urban mobility.

2.1 Energy Consumption of Buildings

Building energy has been researched extensively in recent decades. Crawley
et al. [7] focused on simulating the energy consumption of buildings. In this
work, they surveyed several simulation programs and a comparison is conducted
according to general modeling features: zone loads, building envelopes, and day
light and solar infiltration, ventilation and multizone airflow, renewable energy
systems, electrical systems and equipment, HVAC systems, HVAC equipment,
environmental emissions, economic evaluation, climate data availability, results
reporting, validation, and user interface, links to other programs, and occu-
pancy load of buildings. Amasyali et al. [1] examine machine learning methods
in predicting building energy consumption. From their work, the short-term,
e.g. hourly, and long-term, e.g. yearly, prediction has equal importance for the
construction and maintenance of buildings and power grid. Sadineni et al. [10]
study the technical point of construction components e.g. walls, roofs of building
toward energy efficiency. Castleton et al. [4] focus on making energy efficiency
of buildings through green roof.

2.2 Urban Mobility

Urban mobility is a branch of research that focuses on understanding the move-
ment of people within urban areas. Doan and Lim [8] use data from location-
based social networks to understand urban mobility. Specifically, they analyze
data to illustrate two new factors named area attraction and neighborhood com-
petition. Then, they propose a probabilistic model to incorporate these fac-
tors. Through their extensive experiment, they show that these two factors are
very important for understanding the movement of people in urban areas. Cho
et al. [5] studied the movement of urban dwellers around two important places:
home and work. It shows that using these two places can reveal several movement
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patterns of users such as their habits and movement behaviors. Wei et al. [13]
wants to optimize traffic by enhancing the vehicle flow through controlling traf-
fic lights. Particularly, they propose a reinforcement learning method to achieve
the goal. Through their experiment using real data, it significantly improves on
traditional methods. Stiglic et al. [11] studies the combination of two modes of
transportation: ride-sharing and public transit. From their work, they find out
that such integration improves mobility and also encourages people to use public
transportation.

3 Datasets

We used 3 different datasets, one main dataset provided by the organizing com-
mittee and two other datasets form external sources. The first dataset contains
the following information:

1. Vehicles dataset: we have the tracking data (snapshots) for vehicles across
the road links, in addition to the average commute data from and to work.

2. Buildings dataset: the footprints of the buildings.
3. Emission dataset: the hourly emission data for 10 different dates.
4. Traffic dataset: road links, their properties and locations.

The second one is available freely online at the city of Chicago’s website [6].
The dataset contains traffic volume measurements for different streets across
different times of the year (mainly the data was collected in 2006).

The third dataset, which is the Land Use Inventory for Northeast Illinois,
is an open source dataset containing the land use codes for all the buildings
and land parcels in northeast Illinois [9]. The dataset is collection of land uses
which were identified at the parcel level using parcel and assessor data provided
by seven northeast Illinois counties, and is published by Chicago Metropolitan
Agency for Planning (CMAP).

For each location and date given in the main dataset, we crawled its weather
information via DarkSky API.

Data Preprocessing: After we summarized the data into trips, we found that
about 7.5% of the vehicle’s end points data are outside the area of buildings
as shown in Fig. 1. Since this percentage is high enough to be effective on the
conclusions that can be drawn from this study, we dropped them and kept the
remaining data for our analysis. Moreover, we relied only on the data of weekdays
since we have a shortage of data for the weekends.

After analyzing the building dataset given to us, we observed that the dataset
lacked the land use codes. In order to combine the dataset published by the
CMAP and the dataset provided to us, we used QGIS intersection tools to
combine the two datasets [12]. The intersection tool extracts the portion of
features from the input and the overlay layer and makes a temporary layer
with attributes of the overlapping features from both the input and overlay
layers. This temporary layer was then used for further processing for the vehicle
assignment.
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Fig. 1. Trips ending points vs grid blocks

4 Methodology

4.1 Vehicle to Buildings Assignment

This method is an improvement to the approach followed by Berres et al. [3]
where they used the last seen location of a particular vehicle to assign it to
the nearest building. Similarly, we also use the last seen location but instead of
assigning the vehicle to one specific building, we assign it to a grid block that
contains several buildings. Then, we use the land-use and size of the building
to fine tune the assignment. We created a mapping between the land-use of the
building and the expected number of vehicles that belong to it. The table is
filled based on intuition and data whenever it was available for us. For example,
the land-use code 1111 is used for a single family building. We looked for the
expected number of vehicles owned by a single family in Chicago area and saved



522 A. Alharin et al.

this number in our buildings to the number of vehicles map. Then, to assign a
specific vehicle to one of its grid block building, we use the expected number of
vehicles to help us make an accurate assignment. For instance, if the building
with 1111 land-use was already filled, we assign the considered vehicle to another
building in the grid block. We use the size of the buildings to make the number
of cars inside the same grid block proportional to its size. For example, if the size
of a building A is twice the size of its neighbor B, we try to make the number
of vehicles assigned to A two times larger than the one of B as long as this
number is less than the maximum number of vehicles as estimated by the land-
use (building capacity). The first step of determining the grid block is straight
forward since it is based on the last seen location only. Algorithm 1 describes
the second step in our vehicles to building assignment approach.

Algorithm 1: Grid Block Building to Vehicles Assignment Algorithm
Result: BC: buildings to vehicles assignment
B: set of grid buildings;
V: set of grid vehicles;
Initialize BC: mapping from building to vehicles empty dictionary ;
S = total sum of buildings sizes ;
for i from 1 to length of B do

b = B[i] ;
b_vehicles_number = size(b) * length of V / S ;
for j from 1 to b_vehicles_number do

v = pick the nearest vehicle in V to b ;
push v to BC[b] ;
remove v from V ;
if length of BC[b] is more than its land-use capacity then

R = b_vehicles_number - size(BC[b]) ;
distribute R to the remaining buildings ;
break;

end
end

end

Regarding the size of the grid blocks, we tried different ranges. Our main
criteria of judging a good grid blocks segmentation is the average number of
buildings. If the number was too high, then the next step of fine tuning the
exact building that the vehicles belong to will be harder. On the other hand,
choosing a segmentation with a small number of buildings increases the chance
of missing the real building. We tried different combinations and ended up with
the segmentation shown by Fig. 2. Each grid is of 245m. X 235.32m.

4.2 Traffic Analysis

We studied multiple aspects of traffic. First, we analyzed the hourly pattern of
traffic across different road links from the provided dataset. Moreover, we used
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Fig. 2. Density of buildings in Chicago loop

another dataset provided by the city of Chicago to cover more places in Chicago.
We also compared the pattern of the provided commute data with the pattern
summarized from the snapshots. We converted the snapshots data (data that
describe the details of commutes by different vehicles across different links) into
a small table of trips that contains: vehicle id, starting and finishing time of the
trip, first and last seen locations and then extracted the hourly pattern from it.

Moreover, we performed a hybrid spatial temporal analysis for traffic to
examine the effect of location and time. This data is visualized in GIF 1 that
shows the spatial distribution of traffic data where the photo changes to show
the 24-h of the day.

4.3 Emission Versus Traffic and Weather

In order to compare emission with traffic, we calculated the average hourly pat-
tern of both quantities across the entire dates of the given dataset, and then we
plotted them with each other to see the correlation. We classified traffic values
into three categories: high, low, and medium. High category includes the values
more than one standard deviation above the mean, while low category includes
the values lower than one standard deviation from the mean. Other values are
considered medium. We applied the same technique on emission data as seen in
Fig. 3.
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Fig. 3. Emission and traffic per road link

In addition, we have extracted the weather data for the corresponding loca-
tions and times (temperature to be exact), and compared it with the emission
and traffic data. We also used City of Chicago dataset [6] to get a better under-
standing for the affects of traffic on weather.

5 Results

5.1 Vehicle to Buildings Assignment

Out of 18K unique vehicles summarized from the snapshots data, we found that
about 1K vehicles were not assigned to any grid blocks since they are outside
the area covered by buildings. For the remaining vehicles we first tested our
assumption about the relationship between land-use and the end locations of
vehicles to work snapshots summaries. Figure 5 shows the relationship between
the level of traffic and land-use. Notice that we divided land-use into two cat-
egories: residential and work areas. Residential areas include residential codes,
while work areas consist of commercial, institutional, and industrial buildings.
From this figure, we can deduce that the northern part of Chicago loop tends
to be more crowded with a high number of work buildings, while the outskirts
have more residential places and less traffic.

Since one of the important metrics in the assignment process is the average
number of vehicles assigned to each grid block, we can see the histogram of the
average number of vehicles in Fig. 6. We observe that the majority grid blocks
have relatively lower average number of vehicles assigned to them (less than 50),
while we have few grid blocks with high density. It is important to distinguish
between the vehicles assigned to a specific grid block and the traffic density of
that block, since the traffic density correlates with the number of vehicles at
a specific point of time, regardless whether vehicles stopped at that place or
not, while we assign the vehicles to grid blocks based on their last seen location
only. Secondly, we pair vehicles to specific buildings as stated in the Algorithm 1
using the land-use to specify the capacity of the buildings, and the building
size to estimate the number of expected vehicles for that building. When the
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Fig. 4. City of Chicago traffic

estimated number of vehicles exceeds the capacity, we distribute the remaining
vehicles to be assigned to the other buildings. We also found that the algorithm
is sensitive to the selection of the grids configuration. Choosing a configuration
of grid blocks with a high number of buildings increases the rate of assigning
a vehicle to a relatively distant building which might not be true since people
tend to park near their working place.

5.2 Traffic, Emission and Weather Analysis

When we studied the hourly pattern of traffic from commute survey data in
weekdays, we found that it tends to have a peak between 8 to 9 AM as shown
in Fig. 7. The same pattern is supported by the snapshot data as we can see
in Fig. 8. Note that in this graph the y axis represents the ratio between traf-
fic/emission to its peak over all the data since we are more interested in the
pattern rather than the unit of measure. Moreover, we can see the spatial dis-
tribution of traffic data for different links in Fig. 3. For the parts closer to the
east we used the City of Chicago’s data to provide their spatial traffic as shown
in Fig. 4. Note that the data was collected in 2006 in scattered points without
determining the hour of the day, which makes it less accurate than the given
dataset. The shown traffic values represent the average number of cars per link
across all the covered period in the dataset. To see temporal and spatial patterns
at the same time, we created a GIF that shows the traffic per link in different
hours of the day. More details are shown for both emission and traffic in GIF
while Fig. 8 shows the hourly pattern for both emission and traffic. We noticed
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Fig. 5. Vehicle density per grid block with building type

Fig. 6. Histogram of vehicles distribution over grid blocks

that the two quantities are well aligned and this pattern applies for the 5 week-
days given in the dataset (The graph shows the pattern for Monday). On the
other hand, a typical day’s temperature in Chicago can be seen in Fig. 9. If we
compare this with the pattern of traffic/emission in Fig. 8 we can observe two
differences: the peak value of temperature is at 2 pm while the peak of emis-
sion and traffic is about 3 h earlier. The second difference is that temperature
decreases more smoothly compared with emission and traffic.
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GIF 1: Traffic and Emission Visualization

Fig. 7. Commute by hour for a weekday

Fig. 8. Emission (left) and Traffic by hour
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Fig. 9. Temperature of a typical day in August

6 Conclusion and Future Work

In this work, we have examined the energy use of buildings in Chicago loop.
To untangle the relation, we propose a novel algorithm for assigning vehicles to
buildings. We also study the energy use under the effects of different features
such as weather, emission.

For future works, we will examine the higher resolution of data in Chicago.
For example, wind and humidity are two more features that have strong impact
but are not included in this study due to space limitation. Moreover, integrating
the detailed movement of each individual also increases the accuracy of our study.
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Abstract. As part of the 4th annual Smoky Mountains Data Chal-
lenge hosted by Oak Ridge National Laboratory, we sought to quantify
uncertainty in subsurface exploration of the underground to facilitate
decision-making. To provide some context, in the collection of seismic
data, sounds waves are transmitted into the ground and their reflections
recorded by a receiver. However, due to inconsistencies of the subsurface
medium, accurate localization of underground layers is difficult without
directly digging down to confirm. To combat this issue, we used sev-
eral statistical and computer vision to quantify uncertainty of seismic
data images by labelling each pixel of a seismic survey (realistic models
of subsurface density) to indicate its volatility. After thorough analysis,
we could conclude that not one “good” metric exists to accomplish our
de- fined goal; uncertainty is defined differently depending on the spe-
cific methods one employs. Every uncertainty map that was generated
using a unique technique highlighted distinct areas of the seismic sur-
veys. More experimentation and feedback from experts are needed to
identify what optimal combination of these (or other) techniques would
be best to arrive at the best measurement by which to measure subsurface
uncertainty.

1 Background

In the energy industry, it is important to have a solid understanding of sub-
surface characteristics in order to discover untapped natural resources. Before
drilling down to acquire these resources, engineers will conduct a thorough seis-
mic analysis of the area to determine whether it is worth the risk to do so. The
process of generating an understanding of the unknown subsurface structures
includes the following:

1. Seismic data collection/surveying
2. Seismic data pre-processing
3. Seismic migration & velocity model construction
4. Seismic interpretation
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Seismic surveys are typically conducted using powerful sound waves being
emitted deep into the earth. These sound waves bounce off boundaries between
subsurface layers and are recorded at the surface. During this collection of seismic
data, one or more sources of sound energy transmit waves while one or more
receivers record the reflections of these waves. The locations of these layers can
be identified knowing the source location, receiver location, and measurement of
how much time has elapsed between the transmission and reception of the signal.
Ideally, one can label subsurface boundary layers based on peaks found in the
seismic trace (amplitude over time of the signal received). However, noise can
often distort the signal, making peaks much more difficult to identify, so signal-
processing techniques are employed to denoise the signal as much as possible.

To evaluate every seismic trace, offset pair gathers are used to reduce the
uncertainty. Offset pair gathers are produced by many pairs of sources and
receivers that record reflections off the same reflector in the given subsurface.
This redundancy helps validate the accuracy of a velocity model. These many
pairs collect depth estimates for reflectors and plot them so that depth is depicted
on the y-axis and offset pairs along the x-axis. Gathers with mostly horizontal
lines indicate an accurate velocity model.

In this paper, we analyze subsurface densities and incorporate different meth-
ods to quantify and visualize areas of uncertainty. Given how difficult it can be to
identify points of uncertainty as there is no certain way to verify our results, we
employed a variety of many different statistical and imaging methods to arrive
at our most confident conclusion.

2 Related Work

In determining what methods to use for quantifying and visualizing uncertainty,
we drew ideas from medical imaging and image comparison measurements. The
Kullback-Leibler Divergence approach was inspired by [1], which explains the
uses of K-L Divergence in determining uncertainty within medical images.

Another metric we used, Structural Similarity Index [3], is a common image
comparison method that compares the similarity between two entities. SSIM uses
luminance, contrast, and structure to check image quality, returning a number
between −1 to 1 (complete opposite to exact replica, respectively).

As for the use of canny filters [2], academic papers on computer vision pro-
vided insight into how we could use edge detection techniques to focus on hori-
zontal striping present in gathers. The use of this popular edge detection tech-
nique primarily comes from image processing in the field of artificial intelligence.

3 Contributions

In this paper, we showcase various statistical and computer vision techniques uti-
lized for analyzing subsurface characteristics and the uncertainty around them.
We developed a set of metrics that seek to identify exactly where uncertainty
is present and then techniques for visually presenting those metrics overlaid
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on raw data. Specifically, we delve into seismic uncertainty, seeking to further
understand subsurface characteristics.

In particular, we evaluated the following methods/metrics for quantifying
uncertainty in seismic realizations:

1. Standard Deviation, a common method to determine a metric of uncertainty
2. K-L Divergence, a metric to quantify the statistical distance difference

between an actual and observed probability distribution
3. Structural Similarity Index, an image comparison technique to determine the

similarities and differences between partitions of the realizations
4. Canny Filtering, an edge detection operator used to detect edges in images

based on the intensity of the gradients

All code developed as part of this project is made available open source on
Github at https://github.com/agrippa/geo-owl-ogy.

4 Methods

In this section, we expand on the dataset and algorithms used in this work
(Fig. 1).

Fig. 1. Workflow schematic of project

4.1 Dataset

There were two datasets available for this project: one small dataset (3 GB) and
one large dataset (49 GB). The small dataset is a subset of the files contained
in the large dataset. The datasets consist of a set of models of the subsurface
density (called density models, realizations, or stacks). For every realization, the
plausible density at a given point is generated based on the full seismic survey.

These 2-D realizations were randomly generated and based on a single known
ground truth, and can be used to visualize the structures in the subsurface. These
realizations are commonly loaded into a 2-D Numpy array (depth (z) dimension
of 400 and a horizontal (x) dimension of 1058, with x as your leading dimension
and z as your innermost dimension. Figure 2 shows an example of what a stack
looks like when visualized in Python.

For each realization, the dataset also includes a file of gathers produced
using the same velocity model. A gather is basically an estimate of the density

https://github.com/agrippa/geo-owl-ogy
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at a given point for a source-receiver pair in the seismic survey. Every single
realization is mapped to one of these offset pair gather files, and each file is
conveyed in 3-D form as a Numpy array with 39 offset pairs in the survey. The
x and z dimensions are the same as the realizations, with an added y-dimension
indicating the offset pair. These gathers basically store values measured at the
same physical coordinate in the subsurface using different sources and receivers
during a seismic survey. Figure 3 shows an example of what several gathers look
like when visualized.

All of these files were stored in industry-standard SEGY format, and a
Python module was used to load and visualize them.

Fig. 2. 2-D realization of subsurface

4.2 Standard Deviation

The goal of our Standard Deviation method was to take the standard deviation
across all realizations for each pixel, and use that as a simple uncertainty metric.

First, the standard deviations were calculated through collecting every pixels’
values from every realization in the small data set, storing these values in a 1058
× 400 (dimensions of each realization) × number of realizations matrix. The
first iteration over the realizations was to collect the means for each pixel; the
second iteration was to apply the standard deviation formula.

After the computation, the standard deviations were visualized across every
pixel to see where the points of high variation existed on a sample realization.
The points of high standard deviation were displayed as varying shades of red
on top of a random realization, where the darker shade represented more uncer-
tainty. This method was conducted on the large data set and the canny-filtered
realizations (later discussed).
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Fig. 3. 3-D gathers based on realization

4.3 Kullback-Leibler Divergence

We also explored the application of K-L Divergence (also called relative entropy)
across realizations to highlight areas of general uncertainty by computing the
distance between two probabilistic distributions.

For every pixel across all realizations, the set of possible values were first
binned into a frequency vector. Then a “true” distribution was computed by
finding the most common binned value among the realizations; it was then con-
verted into a probability vector by giving the most common bin a value of 1.0
and all others 0.0. The K-L score for each pixel was then computed by taking
the K-L divergence between this “true” distribution and the observed distribu-
tion across realizations. We were then able to view an image of the K-L scores
superimposed on a sample realization.

To offer some intuition in to this approach, what we are essentially doing
is finding the distance between the observed distribution of values and a “true”
distribution of values, where the “true” distribution assumes that the most com-
mon value bin is also the correct one. For pixels where the possible values are
focused in a single bin, the K-L divergence between our fake “true” distribution
and the observed distribution will be small. For pixels where there is a wide
range of possible pixel values/bins, the K-L divergence will be high because no
one bin will be much more frequent than the others.
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Fig. 4. K-L divergence formula (discrete probability distributions P and Q)

4.4 Structural Similarity

The goal of this method was to calculate the structural similarity of a sliding
window across every pair of realizations.

At first, we used a sliding window in which there were no overlap, across all
pairs. However, this resulted in blocky visuals, not accurately showing the SSIM
values at a fine granularity as large blocks of pixels were being assigned a single
value (see Fig. 6). Thus, we tweaked our approach to instead use overlapping
windows to gather more fine grain information and more accurately assign pixels
an SSIM value (Fig. 4).

When using overlapping windows, we ran into performance issues with a
step size of 1. As a result, we decided to reduce the time by a factor of 16 by
making the horizontal and vertical step size 4, trading off granularity for speed.
With every iteration of the sliding window, we calculated the SSIM value of the
window between the two files and added each of those values to its respective
pixel. Finally, we took the mean of every pixel’s SSIM across all realizations
and plotted the result. Due to the nature of overlapping, the corners and edges
receive less coverage than elements towards the middle of a realization (Fig. 5).

Fig. 5. Formula for structural similarity across windows x and y

4.5 Canny Filtering/Gather Image Quality

The techniques previously described have focused entirely on the stacks/
realizations available in this dataset. However, an entirely separate collection of
data is also available to us in the gathers of the dataset. These gathers break down
the measured values at each physical coordinate by source-receiver pairs, and so
they can offermore fine grain information. From the challenge problemdescription,
we know that “in a gather of an accurate velocity model, geophysicists expect to
mostly see horizontal lines, indicating that the depth estimate for a layer is the
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Fig. 6. Areas where mean SSIM values ≤0.6 on a sample realization (deeper red, lower
SSIM value). Block-like visuals are evident.

same across all offset pairs” [4]. Therefore, we explored techniques for finding high
quality velocity models by finding horizontal lines in gathers. This can enable us
to then focus our techniques on only realizations that are most realistic.

The Canny Filtering method proved to be especially useful. After normalizing
the gathers’ data from the small data set to ensure good illumination, Canny
Filter was applied to the images. A Canny Filter is an edge detection operator
used to detect edges in images based on the intensity of their gradients.

With the application of the Canny Filter, the Gaussian-smoothed gather
images were reduced to just a few white lines edges highlighting the most obvious
edges. The smoothing threshold was set for the purpose of noise reduction and
to showcase just the most prominent edges. Figure 7 shows an example of what
a gather looks like after applying a Canny Filter.

We could then narrow down the number of “good” realizations based on
the horizontal consistency of the gathers after applying the Canny Filter. To do
this, the 2-norm (Frobenius norm) was calculated between neighboring columns
of each gather and summed up. By this metric, a gather containing the greatest
number of similar columns of pixels would be given the lowest scores and qualify
as a “good” gather.

The Structural Similarity and K-L Divergence techniques mentioned in the
previous sections were then re-applied to a tuned dataset consisting of only
“good” realizations.

5 Results

5.1 Standard Deviation

Figure 8 shows a sample result from our Standard Deviation method, applied
to the large dataset for this challenge problem. In this visualization, overlay
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Fig. 7. Example gathers after applying Canny Filters

red on top of pixels whose standard deviation exceeds a certain threshold (2.0).
Deeper reds indicate higher standard deviations, lighter/brighter reds indicate
lower standard deviations. In general, this method appears to be highlighting
areas where the layers in the subsurface are more angled – or very deep portions
of the volume.

5.2 K-L Divergence

Figure 9 shows a sample output of our K-L Divergence method applied to the
small dataset. It is clear that the uncertainties picked up by this method differ
from those highlighted by the standard deviation metric. K-L appears to be
picking up on more fine grain uncertainties around the edges of layers in the
subsurface as they shift around under different velocity models.

5.3 Structural Similarity

Figure 10 shows a sample output of the Structural Similarity method. In these
images the brighter the red, the higher the mean SSIM values while not crossing
above a given threshold (0.6). The deeper the red, the lower the mean SSIM
value and therefore the more uncertainty. Again, we find this method seems to
be highlighting a different area of uncertainty than the previous two methods –
particularly focusing on the deeper regions of the volume.
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Fig. 8. Areas where standard deviation ≥2.0 overlaid on a sample realization.

Fig. 9. Superimposed image of the good realizations (small data set) after being pro-
cessed using K-L Divergence

Fig. 10. Areas where mean SSIM values ≤0.6 on a sample realization
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5.4 Canny-Filtered Dataset

Finally, we also consider how using a filtered and tuned dataset with the three
above methods (Standard Deviation, K-L, SSIM) changes the outputs generated
by those respective methods on the challenge’s small dataset.

Figure 11 shows the distribution of quality scores across the small data com-
puted using the Canny method applied to gathers files. Based on this distri-
bution, we labeled all realizations/gathers in the small dataset with a score
<= 286, 000 as “good”. This reduced the size of our dataset from 59 realizations
to 29 realizations. Figures 7 shows an example of a quick spot check to validate
that the scores match our intuition about what a “good” and “bad” gather looks
like (Fig. 12).

Fig. 11. Histogram visualizing the distributions of realization scores (small dataset)
based on gather distances

Figures 13, 14, and 15 show the outputs of our Standard Deviation, K-L
Divergence, and SSIM methods applied to the high quality dataset, respectively.
We can see that the trimmed dataset has a major impact on the output of the
Standard Deviation and SSIM methods, but don’t observe much change in the
K-L Divergence output.

The Standard Deviation metric is now highlighting less of the image, sug-
gesting that uncertainty has been reduced by focusing on “good” realizations.

The SSIM metric now appears to be mostly highlighting uncertainty in the
left side of the volume – the region of highest uncertainty appears to have shifted.
At the moment, we do not have an explanation for this change.

6 Discussion and Conclusions

Based on the visualizations delivered by each strategy, each technique seems to be
highlighting the image in different ways. Standard deviation indicates broader
strokes of uncertainty by coloring in whole regions of the image, while K-L
divergence focuses on outlining horizons where the distribution is showing high
uncertainty. Meanwhile, the SSIM approach is similar to Standard Deviation in
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Fig. 12. Example of two gathers with a good and poor quality score, respectively

Fig. 13. Areas where standard deviation ≥2.0 on a sample realization

Fig. 14. Superimposed image of all realizations (small data set) after being processed
using K-L Divergence
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Fig. 15. Areas where mean SSIM values ≤0.6 on a sample realization

that it is highlighting broad strokes of the image but seems to be focusing on a
different region.

When focusing on the realizations that were deemed to be “good” by our sim-
ple distance metric, we saw that Standard Deviation and SSIM were significantly
impacted in their outputs. In general, both seemed to demonstrate lower uncer-
tainties. In the case of Standard Deviation, the same regions are highlighted but
to a lesser extent. In the case of SSIM, its focus seems to have shifted entirely.

Given these results, it is difficult to objectively say that a single metric stands
out above the rest to serve as basis for correctly quantifying the uncertainty
into a certain area. Since the data is sparse on how accurate density models
have been in identifying desirable subsurface characteristics, in addition to not
having a ground truth, it is difficult to select a clear winner. Instead, it is likely
some combination of these techniques (and potentially other unexplored ones)
would be the best option as each is able to highlight different types or regions
of uncertainty that might be interesting to seismic interpreters.
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Abstract. The Medical diagnosis and screening field has benefited
tremendously from the advancement of computer technology and access
to data over the past decades. However, due to the complexity of medical
diagnosis and medical research, there are still many unknown problems
in this field. With the recent emphasis of the national government and
academic agencies in open sharing data and advancement of computa-
tional tools, e.g. machine learning and artificial intelligence, there is a
renewed hope to tackle such complex problems. One of the fields that
can benefit greatly from such advancement is the cancer clinical trial
matching. This field has gained a lot of attention due to its complexity
and the large number of people it affects. The algorithms proposed in
this paper aim to assist clinicians and patients in cancer clinical trial
matching by reducing the number of eligible trials using a combination
of logical conditions and text mining of trial descriptions. Data for this
study is provided by the Clinical Trial website which consists of 100
patients’ demographic and clinical information. Our preliminary results
demonstrate the capabilities of unsupervised learning and conditional
logic in reducing the matched trials and suggest further exploration for
improvement and optimization of clinical trial matching for clinicians.

Keywords: Clinical trial matching · Agglomerative clustering ·
Jaccard similarity · Unsupervised learning · Text mining

1 Introduction

One of the astonishing feats of this century is the rapid advancement of medical
data and knowledge through clinical studies. With the advancement of com-
puter algorithms and medical devices, we now have access to more data than
ever before. This is opening up previously unexplored ways of disease identifica-
tion and treatment through data science and engineering. Having patient-specific
access to data from numerous sensors and data sources allows for intricate and
individualized treatment plans to be implemented and advised to patients for
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illnesses that were once considered incurable. Cancer research in particular is one
of the fields that is hoping to take advantage of such novel treatment strategies
with a consistent increase in cancer cases. Although the death rate per 100,000
people has decreased since 2010, the total number of deaths from cancer in the
U.S. alone has increased from 574,738 in 2010 to 599,099 in 2017 [1], and it is
projected to pass 620,000 by 2020 [2]. The number of registered clinical trials has
quadrupled from 82,000 studies in 2010 to more than 349,000 in 2020 (reference:
clinicaltrials.gov). From these studies, more than 52,000 are currently enrolling
patients. However, only one in twenty of cancer patients enroll in clinical trials
due to lack of access and complexity of finding the right match for patients [3].
With the expansion of these data sets also comes challenges for clinicians to
select the treatment plan that best matches a patient’s medical history. Arti-
ficial Intelligent (AI) and Machine-learning (ML) algorithms aim to facilitate
clinician decision-making by finding similarities in large data sets and combine
massive amounts of information from a large pool of patients. The Heavy Lifting
Treatment Helper (HeaLTH) Algorithm proposed here aims to assist clinicians
in clinical trial matching for cancer patients using the combination of logical
brute-force approach and machine learning algorithms such as agglomerative
clustering on clinical trial descriptions.

2 Related Works

The process of automatically identifying and clustering trials and eligibility fea-
tures together based on similarity was performed in [4]. This was accomplished
through the construction of a trial-feature matrix comprised of extracted seman-
tic features from the text of the eligibility features for the clinical trials. Through
the use of center-based clusters, pairwise similarities were calculated for each
clinical trial based on the eligibility features. By using center-based clusters, a
single trial was used as the center for each pairwise comparison, allowing for the
identification of trials whose similarities to the center trial were no less than 0.9.
The team performed their tests on 145,745 clinical trials and extracted a total of
5.5 million semantic features with 459,936 of those features being unique. 8806
center-based clusters were generated, and a sample of those clusters was eval-
uated using Amazon Mechanical Turk (MTurk) yielding a mean score of 4.331
(on a scale of 1–5).

The team of [5] sought to automate the processes of feature-based indexing,
clustering and searching for clinical trials. Their approach was to decompose 80
randomly selected trials for Stage 3 Breast Cancer into a vector of eligibility fea-
tures organized into a hierarchy. Trials were clustered based on the similarity of
their eligibility features. To test their method, the team performed a simulated
trial search process by manually selecting features to be used for generating eligi-
bility questions for trial filtering. 1437 distinct eligibility features were extracted,
and 80 trials were used. This resulted in 6 clusters which contained trials that
took similar patient by patient features, 5 clusters based on disease features, and
2 clusters using mixed features. Additionally, the team demonstrated the utility
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of named entity recognition by mapping most features to one or more Unified
Medical Language System Concepts.

Similarly, researchers [6] have used Natural language programming to
increase clinicians’ efficiency in selecting the right clinical trials for pediatric
cancer patients. The selected narrative notes from 55 clinical trials from the
clinicalTrials.gov and combined that with electronic health records from 215
oncology patients. With automation of the eligibility criteria, they were able to
reduce the number of clinical trials matched and saved time for oncologists in
choosing the right treatment plan.

3 Methodologies

3.1 Data

The data used in this project was provided as part of Oak Ridge National Lab,
SMC conference data challenge 2020 which were originally derived from the
United State government Clinical Trials website (ClinicalTrials.gov). It consists
of 100 cancer patient records (SMC Dataset 2) containing information such as
patients’ age, gender, therapy history, Performance Status, as well as white blood
cell (WBC) count, hemoglobin, platelets, and more (see Table 1 for a complete
list of variables used in the study). Additionally, six eligibility criteria documents
containing the subsets of the clinical trials (SMC Dataset 1) were provided. Each
document lists clinical trials pertaining to particular variables seen in Table 1,
with a total of 1005 trials across all datasets. The eligibility criteria documents
contain six factors for clinical trial eligibility presented in Fig. 1, SMC Dataset 1.
These factors are Hemoglobin count, WBC count, Platelets count, HIV, Perfor-
mance Status, and Prior Therapy. For example, for the WBC factor, the clinical
trials have inclusion and exclusion criteria related to a patient’s white blood
cell count. Additionally, each eligibility file contains seven columns, which can
be seen in Table 2. Of note is the NCIT column in each eligibility file, which
contains a logical statement using c-codes. C-codes are numerical codes that
represent medical terminology, e.g., C25150 is age, C12767 is the pelvis. These
codes represent human body parts, basic human information (age and gender),
therapy trials, and more. Figure 1 shows the flowchart of data sources as well as
the detailed steps we took to run our conditional logic and clustering analysis.

3.2 Logical Comparison

To assist in, and act as a baseline for, treatment matching, simple logical opera-
tions were performed on the c-codes for each trial in the different eligibility files.
For example, in the WBC Trials dataset, the NCIT column contains several
logical statements per trial, such as C51948>=4000, which translates to white
blood cell count greater than or equal to 4000 per milliliter of blood. The logical
code takes the logical statements that accompany each trial in the eligibility file,
finds the corresponding information that each c-code represents in a patient’s
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Fig. 1. Data processing framework

record, and calculates the logic. Any trial that returns a True statement is saved
as a potential trial for that patient.

The first step necessary for logical comparison was the cleaning of the NCIT
column values, as many entries had a mismatched number of parenthesis, missing
c-codes, or blatant syntax errors. Once cleaned, each NCIT conditional state-
ment was read in one at a time and broken into separate parts. For example, the
statement C51948>=4000 was broken into three segments: Code: C51948, Com-
pOp: >=, and Value: 4000. The code segment for each NCIT conditional was
read in and the appropriate patient information was substituted in. So, for the
code C51948, the patient’s white blood cell count was placed in the code’s place,
and the three segments were combined to create a conditional statement. After
the substitution, the statement C51948>=4000 becomes X>=4000, where X
represents the current patient’s white blood cell count.
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Table 1. Patient information

Variable Description

PatientID Numerical value for a patient

Cancer site (bool) Location of the cancer within the body

Cancer stage (bool) Stage of the cancer

Treatment history (bool) Prior therapy undergone by patient

Gender The Patient’s biological gender

Age The Patient’s age

Hemoglobin Patient’s hemoglobin count

Platelet Patient’s platelet count

White blood cell Patient’s white blood cell count

Performance status (bool) Patient’s ability to perform daily living activities

Note: for the variables marked with (bool), this means that variable had a c-
code counterpart used for comparison simplification. C-codes are simply numer-
ical codes that correspond to some medical terminology. The codes were pro-
vided by the SMC committee.

Table 2. Eligibility file columns

Variable Description

NCI ID/NCT ID Codes representing different trials

Official title The official title of the trial

Inclusion indicator include or exclude the patient if they match the criteria

Description Word and logical representation of matching criteria

Text Text version of matching criteria

NCIT C-code representation of matching criteria

This process of patient data substitution was repeated for each portion of
a conditional statement, as many trials had many conditional statements for
inclusion or exclusion. The output of the logical statement returned a True or
False for the whole trial in regards to whether or not the patient met the criteria
for inclusion or exclusion.

3.3 Clustering

Preprocessing. The output of the logical comparison step is merged with the
eligibility criteria dataset (e.g., hemoglobin trials, HIV trials, performance sta-
tus trials, platelets trials, prior therapy trials, WBC trials). From the available
columns of the merged dataset, the description, NCTid, and patientID columns
are extracted and used for cluster assignment. The primary variable used for the
creation of clusters is the “Description” column in the eligibility criteria datasets,
while the other variables act as identification factors for the patient(s) and the
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clinical trials. Natural Language Processing (NLP) techniques were applied to
the dataset to pre-process and clean up the text, extract keywords, apply term
frequency-inverse document frequency (TFIDF) to get the frequency of those
keywords. All the rows with NAN values were also removed from the dataset.

Jaccard Similarity. After the pre-processing step, the Jaccard similarity index
is calculated to determine the similarities between the two sets of words. Jaccard
only takes a unique set of words in each sentence, and the repetition of words does
not reduce the similarity index. This is why it is preferred over other similarity
measures such as cosine similarity, which takes the length of words of vectors [7].
We have applied lemmatization to reduce the words to the same root words and
selected pairwise distance to compute the Jaccard similarity index. If the sets
are similar, the similarity index will be equal to 1, otherwise, it will be equal to
0. Equation 1 shows how this similarity index is calculated.

J(A,B) =
A ∩ B

A ∪ B
(1)

Agglomerative Clustering. Agglomerative clustering is a type of hierarchical
clustering technique is that well-established in unsupervised machine learning
[8]. In agglomerative clustering settings, the dataset is partitioned into singleton
nodes and merged one by one with the current pair of mutually closest nodes
into a new node until it is left with one last node, which makes up the whole
dataset. This clustering method is different from other clustering methods in a
way that it measures the inter-cluster dissimilarity and updates that after each
step [8,9]. The clustering is applied to the trials which make it past the logical
comparison filter. Once clustering is applied, there are N number of clusters
that contain X number of possible trials. The number of clusters was selected
dynamically depending on the size of trials for each patient. To find the optimal
k number of clusters, we have computed the following equation:

k = floor(log2(length(eligible trials))) (2)

4 Results

The result of the logical comparison step is returned as a list of eligible clin-
ical trials for each patient. The sample trials are presented in Table 3. Upon
completion of the logical comparison step, the resulting list seen in Table 3 has
clustering applied on a patient by patient case. Upon the completion of the log-
ical comparison step, the average eligible trials across the 100 patients provided
through the data challenge were 283 ± 69 from the total 1005 available trials
across the six eligibility criteria files. The reduced number of trials for the first
10 patients in our dataset is presented in Fig. 2.

After cleaning these resulting trials for each patient by removing any empty
descriptions of clinical trials and using the Eq. 2, we automatically selected the
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Table 3. Sample trial match returns

NCI ID NCT ID Patient ID

NCI-2009-00336 NCT00392327 1

NCI-2011-00878 NCT00956007 1

... ... ...

NCI-2016-00071 NCT03077451 100

NCI-2016-00787 NCT03030417 100

Fig. 2. Number of eligible trials outputted from the conditional logic algorithm for
the first 10 patients (P1 to P10) reduced from the all available 1005 trials across all
eligibility files

Fig. 3. Number of clinical trials in each 6 clusters of Patient 1
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number of clusters for each of the 100 patients. This reduced the number of
trials for Patient 1 to 83 trials and 6 clusters. Figure 3 shows the number of
clusters for Patient 1, dynamically allocated using Eq. 2, along with how many
trials each cluster contains. Once we have clusters for each patient, we took the
top five most repeated words in each cluster. Figure 4 shows the most common
words found in each of the corresponding clusters.

Figure 5, left, shows the overall clusters scatter plot for Patient 1 which is
the result of agglomerative clustering. Principal Component Analysis (PCA) was
used for visualization purposes to illustrate the distribution of each cluster in the
first two principal components. Although we are only showing a 2D scatter plot
here, there is a distinct separation between the clusters that are shown in Fig. 5
separated by different colors. Figure 5, right, shows the number of times the
presented keywords repeated in the selected cluster after taking the three most
common keywords in all clusters, e.g. “HIV”, “Hemoglobin”, and “Platelets” out
of the accepted keywords in our algorithm.

5 Discussion

With the expansion of the number of available clinical trials available for clin-
icians and other health providers, it is almost impossible to choose the right
treatment without spending hours to narrow down the choices. Machine learning
techniques have begun to be used for optimizing this process. In our approach,
there is a noticeable improvement when comparing the number of clinical trials
that doctors have to go through before and after applying our algorithm. The
results from the logical comparison presented here significantly narrows down
the choices to about third on average for our pool of 100 patients. This was
done by simply going through all the eligibility criteria and combine that with
individual patient info to select the trials that the patient does not qualify for.
This brute force approach alone yields valuable information and can increase
efficiency by up to 300%. Alongside this method, the agglomerative clustering,
which is a type of an unsupervised learning technique in machine learning, can
further facilitate the clinical trial matching process by grouping the similar text
derived from the trial descriptions.

The most frequently used words per cluster are provided to further inform
doctors about each cluster so they can visually see the differences as well as
use this type of categorization to make their decision and quickly gain insight
into the types of trials being returned for the patient. As shown in Fig. 4, each
cluster has common words embedded in them. Looking at the most frequently
used words in trials for patient 1, all the words from the trials that are separated
in each cluster are strongly related to HIV. For example, cluster 1 contains 54
occurrences of the word “HIV”. Also, it has 13 occurrences of the word “cd4”
which is also related to HIV. While all the clusters share some common words,
there are other unique words that are not found in some clusters. The three
keywords of HIV, Hemoglobin, and Platelets were commonly repeated across
all the six clusters presented in Fig. 4 for the patient 1. That is mainly due
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Fig. 4. Most frequent keywords in all six clusters of Patient 1

Fig. 5. Left: Scatter plot of all 6 clusters for Patient 1, cluster 1 is highlighted in the
red-dashed box. Right: The number of times the most common keywords are repeated
in cluster 1 after removing HIV, Hemoglobin, and Platelets from the keywords
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to the fact that these keywords are parts of the eligibility criteria included in
our analysis. Taking those keywords out can help with creating more distinct
keywords among clusters, Fig. 5, right. There is also clearly a need for clinicians
to review more than the top 5 keywords presented in Fig. 4. As also illustrated
in Fig. 5, right, even the least frequent keywords, such as bone, marrow, and
3a4 can be very meaningful features of each cluster. In addition, by increasing
the number of patients and the clinical trials, unsupervised learning is able to
provide a better categorization of similarities in larger data sets which is required
for future precision medicine applications. Ultimately, the HeaLTH algorithm
provides a quick and easy approach to patient trial filtration and identification
for clinicians and patients alike.

6 Conclusion

Utilizing a combination of brute-force logical comparison and machine learning
clustering and classifying, our team has created an algorithm that significantly
reduces the available trials for a patient-based on personal data matching, and
uses hierarchical clustering to further simplify trial selection and examination.
Doctors can use this algorithm to better identify the types of trials a particular
patient is more likely to be assigned to, as well as filter out any trials that may
or may not yield worthwhile results.

6.1 Limitations

The primary limitation of this project was the lack of additional patient data
for testing. Furthermore, this algorithm is built around the way that the clinical
trials were presented and may prove difficult to implement in a separate environ-
ment where clinical trials are presented in a different manner, e.g., if new clinical
trials do not have specific inclusion/exclusion criteria presented in a conditional
format.

6.2 Future Work

Future implementations of this project would be to further streamline the trial
selection process for users. This can be accomplished by implementing a user
interface with the algorithm that takes in the patient data and directly returns
the clustered trials in an easy to read format. Additionally, the clustered patient
trials can be directly compared to hand-picked trials for patients selected by clin-
icians to assist in further refinement and validation of trial selection for patients.
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8. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv
preprint arXiv:1109.2378 (2011)

9. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log.
In: Proceedings of the sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2000)

https://doi.org/10.1186/s12911-015-0149-3
http://arxiv.org/abs/1109.2378


Author Index

Aielli, Roberto 303
Aimone, James B. 349
Alam, Sadaf R. 303
Alamudun, Folami 425
Alharin, Alnour 518
Allen-Dumas, Melissa 425
Alterovitz, Gil 425
Archibald, Rick 35
Armstrong, Ryan T. 226

Bae, Joshua 530
Baroud, Hiba 503
Berres, Anne 425
Berrill, Mark A. 226
Bethke, Friedrich 20
Bianco, Mauro 303
Bilheux, Hassina 189
Bilheux, Jean-Christophe 189
Billings, Jay J. 175
Boehm, Swen 189
Böhme, Maximilian 20
Borisevich, Albina 425
Boudwin, Kathlyn 381
Brandt, Jim 408
Brightwell, Ron 408
Bussmann, Michael 20

Campbell, Scott 240
Campbell, Stuart 145
Cappello, Franck 99
Cardwell, Suma George 349
Chance, Frances S. 349
Chang, C. S. 269, 285
Chen, Jieyang 157
Childs, Hank 157
Cho, Jin 542
Choi, Jong 157, 269, 285
Choi, Minjun 285
Chow, Edmond 35
Chu, Housen 204
Churchill, R. Michael 269, 285
Clee, Edward 3
Collier, Nathan 204
Collins, Douglas 381

D’Azevedo, Eduardo 35
Da Wang, Ying 226
Danciu, Ioana 425
Dasgupta, Archi 465
Dash, Sajal 465
Davis, Kenneth J. 204
Debus, Alexander 20
Desai, Ankur R. 204
Devineni, Pravallika 425
Di, Sheng 99
Doan, Thanh-Nam 518
Dongarra, Jack 35, 51
Doucet, Mathieu 175, 257
Durden, David J. 204

Eaton, Joe 366
Eisenbach, Markus 35
Eisenhauer, Greg 285
Elwasif, Wael 189
Engstrom, Katherine 443
Entschev, Peter 366
Estevez, Ronald 479

Fan, Yong 334
Febbo, Rocco 35
Ferreira, Kurt B. 408

Ganyushin, Dmitry 157
Gentile, Ann 408
Geveci, Berk 157
Godoy, William F. 175
Gok, Ali Murat 99
Granroth, Garrett E. 425
Grant, Ryan E. 408
Gray, Keith 425
Grodowitz, Megan 318
Grossman, Max 425

Hahn, Steven E. 175
Hathaway, Clark 491
Hernández, Benjamín 366
Herrmannova, Dasha 425
Hetrick, John 175



Hexemer, Alexander 145
Hitefield, Seth 189
Hoffman, Forrest M. 204
Hoffmann, Nico 20
Hu, Yue 503
Huang, Lei 3

Imam, Neena 189
Inneo, Samantha 479

Kim, Mark 157
Kincl, Jason 189
Kiran, Mariam 240
Kirkham, John 366
Klasky, Scott 157, 269, 285
Klein, Mark 303
Kohl, James 189
Kotevska, Olivera 425
Kress, James 157
Kube, Ralph 269, 285
Kumar, Jitendra 204
Kurte, Kuldeep 425

Laanait, Nouamane 425
Lapillonne, Xavier 303
Lavelle, Cathleen 381
Levy, Scott 408
Liang, Xin 157
Liang, Zhen 334
Lindquist, Neil 51
Liu, Yan Y. 130
Lofstead, Jay 394, 408
Logan, Jeremy 157, 285
Lombardi, Johann 334
Lopez, Florent 35
Lu, Hao 366
Luszczek, Piotr 51

Maheshwari, Ketan 425
Maheshwari, Ketan C. 226
Mansouri, Misagh 542
Marsaglia, Nicole 157
McClure, James E. 226
McIntosh-Smith, Simon 67
Mehta, Apurva 145
Mehta, Kshitij 157, 285
Metzger, Stefan 204
Mobo, Sebastian 491

Moreno, Regan 443
Musuvathy, Srideep 349

Naughton, Thomas 189
Nichols, Daniel 35
Nicolae, Bogdan 117
Nukala, Sree 542

Olivier, Stephen L. 408

Pan, Jin 451
Parete-Koon, Suzanne 425
Park, Jinseop 285
Patel, Yatri 518
Pausch, Richard 20
Pedretti, Kevin T. 408
Peterson, Peter F. 175, 425
Podhorszki, Norbert 157, 285
Poole, Steve 318
Pugmire, David 157

Qu, Ao 503

Ranasinghe, Nishath 3
Rao, Nageswara 189
Ravulaparthy, Srinath 425
Rivers, Mark 226
Roland, Jeremiah 542
Ronaghi, Zahra 366
Ross, Caitlin 157
Rothganger, Frederick 349

Sanyal, Jibo 425
Sanyal, Jibonananda 130
Sartipi, Mina 518, 542
Schmidt, Erik 443
Schneiderhan, Jack 479
Schulthess, Thomas C. 303
Schwarz, Nicholas 145
Sen, Satyabrata 189
Severa, Willam 349
Shamis, Pavel 318
Shankar, Mallikarjun 83
Sheng, Jonathan 530
Shutt, Gregory 83
Somnath, Suhas 83, 366
Sorrillo, Lawrence 189
Stansberry, Dale 83

554 Author Index



Steed, Chad 443
Stiller, Patrick 20
Suchyta, Eric 157

Teeter, Corinne 349
Thayer, Jana 145
Thompson, Nick 157
Tomov, Stanimire 35
Torge, Sunna 20

Vineyard, Craig 349
Vlcek, Lucas 226
Vorberger, Jan 20

Wadler, Daniel 479
Wala, Fatema Bannat 240
Walser, Andre 303
Walton, Steven 157
Wan, Lipeng 157

Wang, Di 334
Wang, Felix 349
Wang, Ruonan 285
Wang, Yanbing 503
Wang, Yu 503
Waugh, Harry 67
White, Julia 381
Wieder, William R. 204
Wilkinson, Sean 226
Wolf, Matthew 157, 285
Wong, Kwai 35

Xu, Min 204

Yin, Junqi 35, 226, 366, 425
Younge, Andrew J. 408
Yusifov, Anar 425

Zhou, Wenduo 425

Author Index 555


	Preface
	Organization
	Contents
	Computational Applications: Converged HPC and Artificial Intelligence
	Improving Seismic Wave Simulation and Inversion Using Deep Learning
	1 Introduction
	2 Wave Equations and RNN
	2.1 Wave Equations
	2.2 Recurrent Neural Network
	2.3 PyTorch RNN Implementation
	2.4 Seismic Wave Simulation

	3 Differentiable Programming
	3.1 Automatic Differentiation and Adjoint-State Method
	3.2 Extended Automatic Differentiation

	4 Seismic Inversion
	4.1 Seismic Inversion
	4.2 AutoEncoder for Dimensionality Reduction
	4.3 Results

	5 Discussion
	6 Conclusion and Future Work
	References

	Large-Scale Neural Solvers for Partial Differential Equations
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Physics-Informed Quantum Harmonic Oscillator
	3.2 GatedPINN

	4 Results
	4.1 Approximation Quality
	4.2 Domain Decomposition
	4.3 Scalability and Power Draw
	4.4 Discussion

	5 Conclusion
	References

	Integrating Deep Learning in Domain Sciences at Exascale
	1 Background
	2 Deep Learning Software on Modern HPC Systems
	2.1 Towards a Deep Learning Framework for HPC
	2.2 Workflow Software for Modern HPC Systems

	3 Algorithmic Improvements for DNN AI in HPC
	3.1 Asynchronous Methods
	3.2 Reduced and Mixed Precision

	4 Applications
	4.1 Materials Science and Microscopy
	4.2 Super-Resolution for HPC Simulations

	5 Meeting Exascale
	6 Conclusion
	References

	Improving the Performancepg of the GMRES Method Using Mixed-Precision Techniques
	1 Introduction
	2 Numerics of Mixed Precision GMRES
	3 Restart Strategies
	4 Experimental Results
	4.1 Measurement of the Rate of Convergence
	4.2 Performance

	5 Conclusion
	References

	On the Use of BLAS Libraries in Modern Scientific Codes at Scale
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Nektar++
	3.2 QuantumESPRESSO
	3.3 CASTEP
	3.4 CP2K
	3.5 LAMMPS
	3.6 AlexNet
	3.7 Library Tracing Tools

	4 Results
	4.1 Interpreting Matrix Distribution Figures Using HPLinpack
	4.2 Nektar++
	4.3 QuantumESPRESSO
	4.4 CASTEP
	4.5 CP2K
	4.6 AlexNet

	5 Conclusion
	References

	System Software: Data Infrastructure and Life Cycle
	A Systemic Approach to Facilitating Reproducibility via Federated, End-to-End Data Management
	1 Introduction
	2 Systemic Approach to Reproducibility
	2.1 Development and Deployment

	3 Data Ingest
	4 Data Management
	4.1 DataFed Overview
	4.2 FAIR Compliance
	4.3 Data Organization, Sharing, and Dissemination

	5 Data Analytics
	6 Scientific Applications
	6.1 Modelling and Simulations
	6.2 Observations and Experiments
	6.3 Data Analytics

	7 Conclusions
	References

	Fulfilling the Promises of Lossy Compression for Scientific Applications
	1 Promises of Lossy Compression for Scientific Data
	2 Understanding the Effect of Lossy Compression on Scientific Data
	2.1 Methodologies, Tools and Benchmarks
	2.2 Understanding and Mitigating Lossy Compression Error Effects on Applications

	3 Sophisticated Error Controls to Preserve Derived Quantities and Features
	4 Customizable Compression Frameworks
	5 Conclusion
	References

	DataStates: Towards Lightweight Data Models for Deep Learning
	1 Introduction
	2 Background
	3 DataStates: An Overview
	4 Related Work and Positioning
	5 Conclusions
	References

	Scalable Data-Intensive Geocomputation: A Design for Real-Time Continental Flood Inundation Mapping
	1 Introduction
	2 A Geocomputation Use Case
	3 Data and Computing Challenges
	4 Data-Driven Geocomputation on HDA+HPC
	5 Preliminary Results
	6 Concluding Discussion
	References

	Enabling Scientific Discovery at Next-Generation Light Sources with Advanced AI and HPC
	1 Introduction
	2 Scale of the Challenge
	3 A Transformative Data Architecture
	4 The Role of AI/ML
	5 First Steps
	6 Future Directions
	References

	Visualization as a Service for Scientific Data
	1 Introduction
	2 Motivating Workflows
	2.1 Fusion Simulation Workflow
	2.2 KSTAR

	3 On the Shoulders of Giants
	3.1 Tier 1 Related Works
	3.2 Tier 2 Related Works

	4 Visualization as a Service Abstractions
	4.1 Visualization as a Service Abstractions
	4.2 Tier 1 Abstractions
	4.3 Tier 2 Abstractions

	5 Connecting Abstractions to Applications
	6 Conclusion and Vision for the Future
	References

	Performance Improvements on SNS and HFIR Instrument Data Reduction Workflows Using Mantid
	1 Introduction
	2 Neutrons Data at ORNL Facilities
	2.1 The NeXus Format
	2.2 Mantid Processing of NeXus Datasets

	3 Short-Term Performance Improvements
	4 Long-Term View: NCIO
	4.1 The NCIO Framework
	4.2 NCIO Risks

	5 Conclusions
	References

	Experimental/Observational Applications: Use Cases That Drive Requirements for AI and HPC Convergence
	Software Framework for Federated Science Instruments
	1 Introduction
	2 Science Use-Case
	3 Framework Design
	3.1 Overview
	3.2 Roles
	3.3 Software Architecture

	4 Virtual Beamlines
	4.1 EPICS
	4.2 FedScI EPICS Bridge

	5 Conclusion
	References

	Automated Integration of Continental-Scale Observations in Near-Real Time for Simulation and Analysis of Biosphere–Atmosphere Interactions
	1 Introduction
	1.1 Improving Scientific Understanding Through Data-Model Integration
	1.2 Earth System Models and Benchmarking
	1.3 Network-Scale Observations

	2 Visions to Improve Model Performance with Network-Scale Observations
	2.1 Scale-Aware Observational Data Products for ESM Evaluation
	2.2 Near-Real Time Data Accessibility for ESM and Benchmarking

	3 Roadmap to Scientific Understanding
	References

	Toward Real-Time Analysis of Synchrotron Micro-Tomography Data: Accelerating Experimental Workflows with AI and HPC
	1 Introduction
	2 Data Acquisition
	3 Summary of Computational Stages
	3.1 Tomographic Reconstruction
	3.2 Conventional Image Processing
	3.3 Denoising with Deep Learning

	4 Performance Benchmarking
	5 Summary
	References

	Unsupervised Anomaly Detection in Daily WAN Traffic Patterns
	1 Introduction
	2 Related Work
	3 Key Points and Motivation
	3.1 Assumptions
	3.2 Intuition Behind Our Methods
	3.3 Unsupervised Clustering Algorithms

	4 Methodology
	4.1 Trace Collection: Building Streaming Data Pipelines
	4.2 Offline Learning in Classifiers
	4.3 Online Anomaly Finding

	5 Preliminary Analysis
	6 Experimental Results and Discussions
	6.1 Silhouette Analysis for Optimal Clustering
	6.2 Clustering Weekdays and Weekends in Training Data
	6.3 Identifying Outliers in Test Data
	6.4 Impact of Selected Feature Discretization Using Domain Knowledge

	7 Conclusions
	References

	From Smart Homes to Smart Laboratories: Connected Instruments for Materials Science
	1 Introduction
	2 The Experiment Life Cycle: An Example from Electrochemistry
	3 A Data Infrastructure to Map the Scientific Method
	3.1 Capturing Sample Provenance and Custody Chain
	3.2 Complete Recording of Experimental Data and Processing
	3.3 Semantic Processing to Capture Intent and Results to Inform Interpretation

	4 AI-Enabled Smart Beamlines
	4.1 Access to Flexible Workflows
	4.2 Smart Laboratory as a Data Hub

	5 Conclusion
	References

	Machine Learning for the Complex, Multi-scale Datasets in Fusion Energy
	1 Introduction
	2 ML/AI for Fusion Use Cases
	2.1 Deep Neural Networks Architectures for Multi-scale Data
	2.2 Working with Multi-modalities
	2.3 Working with Small Labelled Training Sets
	2.4 Working with Streaming Data

	3 Working with Simulations
	4 Conclusion
	References

	Data Federation Challenges in Remote Near-Real-Time Fusion Experiment Data Processing
	1 Introduction
	1.1 Related Work

	2 Remote Fusion Experiment
	2.1 KSTAR Fusion Experiment and Workflows
	2.2 NSTX-U Fusion Experiment and Workflows

	3 Delta: Supporting Federated Data Today
	3.1 ECEI Analysis with Delta
	3.2 Adaptable Data Transfers Using Data Compression and Filtering
	3.3 Remote Data Federation Services with ADIOS

	4 Toward Plasma Science of the Future
	5 Conclusion
	References

	Deploying Computation: On the Road to a Converged Ecosystem
	Software Defined Infrastructure for Operational Numerical Weather Prediction
	1 Introduction
	2 Background
	2.1 HPC in Operational Workflows for NWP
	2.2 Convergence of Cloud and High Performance Computing

	3 Implementation Details
	3.1 Functional Specifications-System Architecture
	3.2 Operational Specifications-Software Defined Infrastructure
	3.3 COSMO Application Development

	4 Results
	4.1 Resiliency Expectations
	4.2 Performance Expectations

	5 Future Work
	References

	OpenSHMEM I/O Extensions for Fine-Grained Access to Persistent Memory Storage
	1 Introduction
	2 Background
	3 Design
	3.1 Client-Side Interface
	3.2 Server Daemon
	3.3 Server Subspaces
	3.4 Client-Server Mechanisms for Remote Access of Fspace Data
	3.5 Software Implementation Details

	4 Implementation Results
	4.1 Graph Update Workflow Benchmark
	4.2 Benchmarking Requirements and Baseline for Data Persistence
	4.3 Performance Evaluation

	5 Conclusions
	References

	Distributed Transaction and Self-healing System of DAOS
	1 DAOS Introduction
	1.1 DAOS System Architecture
	1.2 Data Protection and Distributed I/O
	1.3 Algorithmic Object Placement and Redundancy Group
	1.4 Self-healing System

	2 Distributed Transaction of DAOS
	2.1 Two-Phase Commit
	2.2 Asynchronous Two-Phase Commit and Batch Commit
	2.3 Read Protocol
	2.4 Transaction Conflict
	2.5 Non-blocking Two-Phase Commit and Transaction Resync
	2.6 Transaction Coordinator Selection and Transaction Resync

	3 Self-healing System of DAOS
	3.1 Health Monitoring System
	3.2 Rebuild Protocol
	3.3 Cascading Failure Rebuild

	4 Asynchronous 2-Phase Commit Performance Results
	5 Conclusion
	6 Future Work
	References

	Truly Heterogeneous HPC: Co-design to Achieve What Science Needs from HPC
	1 Overview
	2 Algorithmic Approach
	2.1 Deep Graph Decomposition
	2.2 Neuromorphic Scaling of 3D Convolutional Neural Networks

	3 Hardware Architecture
	3.1 Analog Neuromorphic Computing
	3.2 Digital Neuromorphic Computing
	3.3 Integrating Neuromorphic Computing with Conventional HPC: Optimizing System Architecture
	3.4 Novel Approaches in Fabrication

	4 Co-Design of Heterogeneous Architectures
	4.1 Analytical Modeling
	4.2 Joint Neural Hardware and Architecture Search
	4.3 Learning Algorithms for Neuromorphic Hardware

	5 Future of HPC: Truly Heterogeneous Architectures
	References

	Performance Evaluation of Python Based Data Analytics Frameworks in Summit: Early Experiences
	1 Introduction
	2 Technical Overview
	2.1 OLCF Summit
	2.2 NVIDIA RAPIDS

	3 Performance Evaluation
	3.1 cuDF
	3.2 cuML
	3.3 cuGraph
	3.4 CuPy

	4 Conclusions
	References

	Navigating the Road to Successfully Manage a Large-Scale Research and Development Project: The Exascale Computing Project (ECP) Experience
	1 Introduction
	2 Background
	3 Implementing a Hybrid Approach in an Earned Value Environment
	4 Case Study: Implementing a Hybrid Approach for ECP
	4.1 Application Development (AD)
	4.2 Software Technology (ST)
	4.3 Hardware and Integration (HI)
	4.4 Assessing Performance Measurement

	5 Tools
	6 Related Work
	7 Conclusion
	References

	Memory vs. Storage Software and Hardware: The Shifting Landscape
	1 Introduction
	2 The Shifting Memory Landscape
	2.1 How is ``Memory'' Used?

	3 The Shifting Storage Landscape
	3.1 How is ``Storage'' Used?

	4 Persistent Memory Characteristics
	4.1 Considering PMEM (Scale-Up)

	5 The Hybrid Machine
	5.1 Consider Persistent Memory
	5.2 Pop Quiz! Memory or Storage?
	5.3 What Do Apps People See?
	5.4 What Do Storage People See?
	5.5 Who Wins?

	6 Memory vs. Storage: Bottom Line
	6.1 What Do We Need to Do?
	6.2 Why Do We Care?

	References

	ALAMO: Autonomous Lightweight Allocation, Management, and Optimization
	1 Introduction
	2 Autonomous Operating System Design
	2.1 Lightweight Node OS
	2.2 Global OS
	2.3 Resource Management Usability

	3 Autonomous Allocation of Lightweight Threads
	4 Autonomous Allocation of Network Resources
	5 Autonomous Allocation of Storage Resources
	6 Autonomous Allocation of Power and Energy
	7 Autonomous Management of Resilience
	7.1 Failure Prediction
	7.2 Scheduling Resilience Activities
	7.3 Heterogeneous Architectures
	7.4 Programming Models

	8 Conclusion
	References

	Scientific Data Challenges
	Smoky Mountain Data Challenge 2020: An Open Call to Solve Data Problems in the Areas of Neutron Science, Material Science, Urban Modeling and Dynamics, Geophysics, and Biomedical Informatics
	1 Introduction
	2 Challenge 1: Understanding Rapid Cycling Temperature Logs from the Vulcan Diffractometer
	2.1 Background
	2.2 Dataset
	2.3 Challenges of Interest

	3 Challenge 2: Towards a Universal Classifier for Crystallographic Space Groups
	3.1 Background
	3.2 Dataset
	3.3 Challenges of Interest

	4 Challenge 3: Impacts of Urban Weather on Building Energy Use
	4.1 Background
	4.2 Dataset
	4.3 Challenges of Interest

	5 Challenge 4: Computational Urban Data Analytics
	5.1 Background
	5.2 Dataset
	5.3 Challenges of Interest

	6 Challenge 5: Using Machine Learning to Understand Uncertainty in Subsurface Exploration
	6.1 Background
	6.2 Challenges of Interest

	7 Challenge 6: Using Artificial Intelligence Techniques to Match Patients with Their Best Clinical Trial Options
	7.1 Background
	7.2 Dataset
	7.3 Challenges of Interest

	8 Challenge 7: The Kaggle CORD-19 Data Challenge
	8.1 Background
	8.2 Dataset
	8.3 Challenges of Interest

	9 Conclusion
	References

	Examining and Presenting Cycles in Temperature Logs from the Vulcan Diffractometer
	1 Introduction
	2 Tools
	2.1 Software
	2.2 Hardware

	3 Data
	4 Technical Approach
	5 Results
	6 Improvements
	7 Conclusions
	References

	Probability Flow for Classifying Crystallographic Space Groups
	1 Exploratory Data Analysis
	1.1 Image Scaling Function

	2 ML Algorithm for Space Group Classification
	2.1 Transfer Learning
	2.2 Tabula Rasa Learning

	3 Overcoming Label Imbalance
	3.1 Probability Flow

	4 Conclusion
	4.1 Future Directions

	A  Appendix
	References

	Towards a Universal Classifier for Crystallographic Space Groups: A Trickle-Down Approach to Handle Data Imbalance
	1 Introduction
	1.1 Problem Definition
	1.2 Proposed Approaches
	1.3 Outline of the Paper

	2 Exploratory Data Analysis
	2.1 Class Frequencies for All Non-Zero Classes
	2.2 A Closer Inspection into Better Represented 20 Classes

	3 Universal Function Approximator to Address Non-Geometric Mapping of CBED Images
	3.1 Top Five-Class Classifiers
	3.2 Top Ten-Class Classifiers
	3.3 Top Twenty-Class Classifiers
	3.4 Summary of the Classification Performances

	4 Trickle-Down Classifier (TDC) to Mitigate Data Imbalance
	5 Scaling Out the Classifiers and Hyper-Parameter Selection
	6 Future Work
	7 Conclusion
	References

	The Macro Impacts of Micro-Climates on the Energy Consumption of Urban Buildings
	1 Introduction
	2 Literature Review
	3 Initial Data Collection and Processing
	3.1 Data Visualization Pipeline

	4 Research Questions
	4.1 Are There Interesting Variations in the Weather and Building Energy Use Data for the Geographic Area?
	4.2 Which Buildings in the Study Are Most Sensitive to Weather Effects?
	4.3 How Can the Data Best Be Divided into Subsets for Meaningful Analysis and Visualization?
	4.4 How Does Energy Use in Each Building Change Throughout the Year?
	4.5 How Is Energy Use Different During the Coldest/Hottest Months as Compared to During Those of Less Extreme Temperature?
	4.6 Are There Any Interesting Visualizations that Illustrate the Changing Dynamics of the Simulated Urban Environment?

	5 Conclusion
	References

	A Framework for Linking Urban Traffic and Vehicle Emissions in Smart Cities
	1 Introduction
	2 Characterization of Original Data
	2.1 Traffic Data
	2.2 Emissions Data
	2.3 Road Network
	2.4 Building Footprints

	3 Data Preparation
	4 Methodology
	4.1 Simplification of Building Data
	4.2 Vehicle-Building Mapping
	4.3 Dispersion of Traffic Emissions
	4.4 Association of Emissions to Buildings

	5 Results and Discussion
	5.1 Qualitative Analysis of Emission Heatmaps
	5.2 Quantitative Analysis of Per-Building Emission Concentrations

	6 Conclusions
	References

	A Data-Integration Analysis on Road Emissions and Traffic Patterns
	1 Introduction
	2 Methodology
	2.1 Challenge 1: Algorithms to Assign Vehicle Occupants to Buildings
	2.2 Challenge 2: Vehicle Emissions and Correlation Analysis
	2.3 Challenge 3: Traffic Patterns Characterization

	3 Results
	3.1 Challenge 1: Performance Comparison of NNS Algorithms
	3.2 Challenge 2: Area-Wide Correlation Analysis of Vehicle Emissions
	3.3 Challenge 3: Characterize Traffic Patterns

	4 Conclusions
	References

	Data Analysis and Visualization of Traffic in Chicago with Size and Landuse-Aware Vehicle to Buildings Assignment
	1 Introduction
	2 Literature Review
	2.1 Energy Consumption of Buildings
	2.2 Urban Mobility

	3 Datasets
	4 Methodology
	4.1 Vehicle to Buildings Assignment
	4.2 Traffic Analysis
	4.3 Emission Versus Traffic and Weather

	5 Results
	5.1 Vehicle to Buildings Assignment
	5.2 Traffic, Emission and Weather Analysis

	6 Conclusion and Future Work
	References

	Using Statistical Analysis and Computer Vision to Understand Uncertainty in Subsurface Exploration
	1 Background
	2 Related Work
	3 Contributions
	4 Methods
	4.1 Dataset
	4.2 Standard Deviation
	4.3 Kullback-Leibler Divergence
	4.4 Structural Similarity
	4.5 Canny Filtering/Gather Image Quality

	5 Results
	5.1 Standard Deviation
	5.2 K-L Divergence
	5.3 Structural Similarity
	5.4 Canny-Filtered Dataset

	6 Discussion and Conclusions
	References

	The Heavy Lifting Treatment Helper (HeaLTH) Algorithm: Streamlining the Clinical Trial Selection Process
	1 Introduction
	2 Related Works
	3 Methodologies
	3.1 Data
	3.2 Logical Comparison
	3.3 Clustering

	4 Results
	5 Discussion
	6 Conclusion
	6.1 Limitations
	6.2 Future Work

	References

	Author Index



