Community Climate System Model
National Center for Atmospheric Research, Boulder, CO

Community Land Model Version 3.0
(CLM3.0) User’s Guide

Mariana Vertenstein, Keith Oleson, Sam Levis and Forrest Hoffman

June 21, 2004

Contents

1 Introduction

2 Obtaining the Source Code and Datasets

3 Creating and Running the Executable

3.1

3.2
3.3

offline mode: using jobscript.csh oL oL
3.1.1 Specification of script environment variables
3.1.2 Setting the Namelist o o
3.1.3 Creation of header and directory search path files.
3.1.4 Building the model e
3.1.5 Running the executable Lo
cam MOAe e e e
cesm MOAE e e e e

4 Namelist Parameters

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Run definitions e e e e e e e e
Specification of model input datasets Lo Lo
Specification of history and restart files Lo
Specification of input physics variables oL oL oo
Specification of RTM River routing e
Specification of cam mode namelist e
Specification of ccsm mode namelist Lo

5 CLM3.0 Data Structures

6 CLM3.0 Surface Dataset Formats

7 Creating a Spun-up Initial Dataset

8 History File Fields

9 Offline Mode Namelist Examples

9.1
9.2
9.3
9.4
9.5
9.6

Example 1: Offline initial run, one day, global
Example 2: Restart run oL
Example 3: Branch run oo
Example 4: Auxiliary history files.
Example 5. Generation of regional grid surface dataset
Example 6. Generation of global gaussian surface dataset

List of Tables

© 00~ O Uk W -

Source Code Directory Structure
Input Data Directory Structure o
Offline Mode Supported Architectures
User Modifiable Script Variables
misc.h CPP tokens
preproc.h CPP tokens e
Filepath e
Namelist Variables overwritten with CAM settings
Master Field List - Temperature and Humidity

10
10
12
12
12
12

13
13
15
19
23
23
23
24

24

25

26

27

32
33
34
35
35
36
37

10
10
11
12
13
14
15
16
17
18
19

Master Field List - Surface Radiation 27

Master Field List - Surface Radiation 28
Master Field List - Surface Energy Fluxes. 29
Master Field List - Vegetation Phenology 29
Master Field List - Canopy Physiology 29
Master Field List - Hydrology 30
Master Field List - Water and Energy Balance Checks 30
Master Field List - Atmospheric Forcing 31
Master Field List - Soil 0 o 31
Master Field List - Volatile Organic Compounds (only included if VOC defined) 32
Master Field List - Dynamic Vegetation (only included if DGVM defined) 32

1 Introduction

CLM3.0 is radically different from either CLM2.1 or CLM2.0, particularly from a software engineering
perspective. The major difference is that CLM3.0 is now both scalar cache friendly as well as vector friendly
and can perform well on both types of architectures. The subgrid hierarchy introduced in CLM2.1 has been
maintained in CLM3.0. However, its implementation within the code has been completely modified in order
to permit the code to behave acceptably on vector architectures such as the Earth Simulator or the Cray
X1. The CLM3.0 code is in fact easier to read as well as being more accessible to the introduction of new
parameterizations than either CLM2.1 or CLM2.0.

Several other software-related changes have also accompanied the new CLM3.0 data structures. A brief
discussion of the new data structures as well as the resulting new decomposition algorithm is given in section
5. In addition, a completely new decomposition algorithm has been implemented for multi-tasked and/or
multi-threaded model runs that result in a significant improvement in both the load balancing as well as
scaling nature of the model. New interfaces have been implemented for the specification of history file fields
and initial dataset fields. Furthermore, history output for RTM river output is now on the RTM grid rather
than being interpolated to the model grid. We refer the reader to the CLM3.0 Developer’s Guide for more
comprehensive details of the coding implementations.

CLM3.0 contains several improvements to biogeophysical parameterizations to correct deficiencies in
the coupled model climate using CLM2.1. In CLM2.1, the 2-m temperature frequently dropped below the
atmospheric potential temperature during daytime heating in certain regions. Stability terms were added
to the formulation for 2-m air temperature to correct this. In CLMZ2.1, there is a discontinuity in the
equation that relates the bulk density of newly fallen snow to atmospheric temperature. The equation was
modified to correct this problem. Aerodynamic resistance for heat/moisture transfer from ground to canopy
does not vary with the density of the canopy in CLM2.1. This leads to high surface soil temperatures in
regions with sparse canopies. A new formulation was implemented in CLM3.0 that provides for variable
aerodynamic resistance with canopy density. The vertical distribution of lake layers was modified to allow
for more accurate computation of ground heat flux. A fix was implemented for negative round-off level soil
ice caused by sublimation. Competition between plant functional types (PFTs) for water, in which all PFTs
share a single soil column, is the default mode of operation in CLM3.0. CLM2.1 accepts either rain or snow
from the atmospheric model. If the precipitation is snow, a formulation based on atmospheric temperature
determines the fraction of precipitation that is in liquid form. In CLM3.0, the atmospheric model (in cam
and ccsm mode) delivers precipitation explicitly in liquid and/or solid form. In offline mode (uncoupled
from an atmospheric model), the formulation based on atmospheric temperature is still used. A fix was
implemented to correct roughness lengths for non-vegetated areas. A full scientific description of CLM3.0 is
given in

Technical Description of the Community Land Model (CLM)

Oleson, K. W., Dai Y., Bonan G., Bosilovich M., Dickinson R., Dirmeyer P.,
Hoffman F., Houser P., Levis S., Niu G.-Y., Thornton, P., Vertenstein M.,
Yang Z.-L., Zeng X.

NCAR Technical Note, NCAR/TN-461+STR, 2004.

In the CLM3.0 release we are also distributing the dynamic global vegetation model (CLM-DGVM) and a
module for simulating volatile organic compound (VOC) emissions. The VOC module is documented in the
CLM3.0 technical description. A full scientific description of the CLM-DGVM as well as an accompanying
user’s guide is given in

The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM):
Technical Description and User’s Guide

Levis, S., Bonan, G. B., Vertenstein, M., Oleson, K. W.

NCAR Technical Note, NCAR/TN-459+IA, 2004.

Finally, CLM3.0 supports a new ability, via the input namelist specification (see section 4), to create and
use a slightly different surface-data file. This new format surface dataset (”allpfts”) is discussed at length in
section 6.

2 Obtaining the Source Code and Datasets
The source code and datasets required to run the Community Land Model version 3.0 (CLM3.0) in offline

mode (uncoupled from other components of the Community Climate System Model version 3 (CCSM3.0))
can be obtained via the web from:

http://www.cgd.ucar.edu/tss/clm.

The user should refer to the CAM3.0 User’s Guide or the CCSM3.0 User’s Guide for instructions on
obtaining code and datasets to run CLM3.0 coupled to other CCSM3.0 components.

It is assumed that the user has access to the utilities tar, Free Software Foundation gunzip and gmake
(GNU gmake).

The CLM3.0 distribution consists of two tar files:

CLM3.0_code.tar.gz

and

CLMa3.0_inputdata.tar.gz.

The file CLM3.0_code.tar.gz contains code, documentation, and scripts. This file must first be uncom-
pressed with the gunzip utility and then ”untarred” as follows:

gunzip -¢ CLM3.0_code.tar.gz — tar xvf -

The above command both uncompresses and "untars” the code into the following subdirectory hierarchy
containing clm3/ as the root:

Table 1: Source Code Directory Structure

Directory Name

Description

src/ Directory of FORTRAN and ”C” source code
src/biogeophys/ Biogeophysics routines (e.g., surface fluxes)
src/biogeochem/ Ecosystem and biogeochemistry routines (e.g., DGVM and VOCs)

src/csm_share/

Code shared by all the geophysical model components of the Community
Climate System Model (CCSM). Contains code for CCSM
message passing, orbital calculations, and system utilities.

src/main/ Control (driver) routines

src/mksrfdata/ Routines for generating surface datasets

src/riverroute/ River routing (RTM) routines

src/utils/ Independent utility routines

src/utils/esmf/ Earth System Modeling Framework utilities

src/utils/timing/ General purpose timing library

bld/ Directory of build, test and run scripts

bld/offline/ Script to build and execute the model on various platforms

tools/ Directory of tools for input dataset manipulation (these tools are used in-

dependent of running the model)

tools/convert_ascii/

Routines for converting user-generated ascii surface dataset files to netCDF
format suitable for use by the model

tools/interpinic Tool for creating new initial CLM3.0 datasets from existing CLMS3.0
datasets at another model resolution and/or landmask
tools/newcprnc/ Tool for comparing model netCDF history files

The file CLM3.0_inputdata.tar.gz contains surface and offline atmospheric forcing datasets. This file
must first be uncompressed with the gunzip utility and then ”untarred” as follows:

gunzip -¢ CLM3.0_inputdata.tar.gz — tar xvf -

The above command results in a directory hierarchy containing inputdata/Ind/clm2/ as the root. This
directory hierarchy is outlined below.

Table 2: Input Data Directory Structure

Directory Name

Synopsis

NCEPDATA/

One year’s worth of atmospheric forcing variables in monthly netCDF for-
mat suitable for running the model in offline mode (uncoupled from the
atmospheric model)

pftdata/

Plant functional type (PFT) physiological constants dataset (ascii format)

rawdata/

"Raw” (highest provided resolution) datasets (netCDF format)
(used by CLM3.0 to generate surface datasets at model resolution)

rtmdata/

River direction map for RTM in ascii format

srfdata/

Directory containing netCDF CLM3.0 surface and ”fgrid” datasets

The surface datasets include new-format (”allpfts”) and old-format datasets
for running CLM3.0 in offline mode

NOTE that surface datasets used in any CAM or CCSM run can also be
used to run CLM3.0 in offline mode

For ”fgrid” datasets see section 4.2 and Example 6

output/

Model netcdf history files provided for the user to validate their port of
CLM3.0

This data was generated using the file, jobscript.csh (see section 3.1) which
was run on the NCAR IBM SP for 1 year using the data in directory
NCEPDATA/.

Note that we are currently providing eight surface datasets for running offline CLM3.0. These datasets
are located in inputdata/lnd/clm2/srfdata. A brief synopsis of each of these datasets is given below. It
is important to keep in mind that any surface dataset used for a CAM or CCSM run can also be used for
running offline CLM. We are providing these datasets as a way for the user to quickly begin using offline

CLM3.0.

e clms_64x128_USGS_c030605.nc :
CAM old-format T42 surface dataset

e clms_64x128_allpfts_c040426.nc:
CAM new-format T42 surface dataset

e clms_128x256_c031031.nc:
CAM old-format T85 surface dataset

e clms_128x256_allpfts_c040426.nc:
CAM new-format T85 surface dataset

e surface-data.128x064_atm.gx1v3_ocn.080101.nc:
CCSM old-format T42 surface dataset

e surface-data.128x064_atm.gx1v3_ocn.allpfts_c040426.nc:
CCSM new-format T42 surface dataset

e surface-data.256x128_atm.gx1v3_ocn.070903.nc:
CCSM old-format T85 surface dataset

e surface-data.256x128 _atm.gx1v3_ocn.allpfts_c040426.nc:
CCSM new-format T85 surface dataset

3 Creating and Running the Executable

The CLM3.0 model can be built to run in one of three modes. It can run as a stand alone executable
where atmospheric forcing data is periodically read in (e.g., using the data in NCEPDATA). This will be
referred to as offline mode. It can also be run as part of the Community Atmosphere Model (CAM) where
communication between the atmospheric and land models occurs via subroutine calls. This will be referred
to as cam mode. Finally, it can be run as a component in a system of geophysical models (CCSM). In this
mode, the atmosphere, land, ocean and sea-ice models are run as separate executables that communicate
with each other via the CCSM flux coupler. This will be referred to as ccsm mode.

CLM3.0 may be run serially (i.e., on a single processor), in parallel using the Message Passing Interface
(MPT) for distributed memory tasks, in parallel using the Open Multi-Processing (OpenMP) directives for
shared memory tasks, or finally in parallel using both MPI and OpenMP (hybrid parallelism). As an
example, the IBM SP consists of distributed memory nodes interconnected by a high performance network
connection, and each node contains multiple shared memory processors. When run on the IBM SP, CLM3.0
uses OpenMP directives for parallelism on processors within a shared memory node and MPI routines for
parallelism across distributed memory nodes to take full advantage of the capabilities of the hardware. The
supported architectures and associated compilers for running CLM3.0 in offline mode are shown in Table
3. Note that when DGVM is defined (see Table 6), bit-for-bit restarts are not supported on the CRAY X1
when processor configuration is changed mid-run.

Table 3: Offline Mode Supported Architectures

Hardware | Architecture || OS Compiler

IBM SP RS600 AIX IBM XL

SGI MIPS TIRIX64 MIPS

Intel Intel X86 Linux pefao, 1f95

CRAY X1 | Cray X1 Unicos/mp | ftn

NEC SX6 NEC SX6 Super-UX | 90

NEC SX6 | NEC SX6 Super-UX | sxf90 (cross compiler)

The method of building and running CLM3.0 depends on both the target architecture and whether the
model will be run serially, in pure MPI mode (distributed memory), in pure OpenMP mode (shared memory)
or in hybrid mode. A general discussion of the various aspects of building and running CLM3.0 follows.

Several cautionary notes have to be made concerning Linux systems. For Linux operating systems,
CLM3.0 is supported for both 1f95 and pgf90 compilers. We have noted problems in running CLM3.0 in
hybrid mode using pgf90 compilers. Consequently, OpenMP threading has been turned off by default for
Linux systems. (The user may turn it back on by setting SMP to TRUE in jobscript.csh (see below). We
have also noted problems in bounds checking with pgf90 when running in debug mode (DEBUG = TRUE).
As a result, the bounds checking in the Makefile has been temporarily disabled.

3.1 offline mode: using jobscript.csh

In order to build and run CLM3.0 in offline mode, a sample script, jobscript.csh, and a corresponding
Makefile are provided in the bld/offline directory. In addition, two perl scripts mkDepends (used to
generate dependencies in a form suitable for inclusion into a Makefile), and mkSrcfiles (used to make a list
of files containing source code) are also included. The user need not worry about these perl scripts.

The script, jobscript.csh, creates a model executable at T42 model resolution with RTM (river transport
model) activated and CLM-DGVM and VOCs deactivated, determines the necessary input datasets, con-
structs the input model namelist and runs the model for one day. Users must edit this script appropriately in
order to build and run the executable for their particular requirements and in their particular environment.

This script is provided only as an example to aid the novice user in getting CLM3.0 up and running as
quickly as possible.

The script can be run with minimal user modification, assuming the user resets several environment
variables at the top of the script. In particular, the user must set the following:

1.

8.
9.

Set batch queue directives for the required machine if will be running in batch mode as opposed to
interactive mode. Batch mode means submitting jobscript.csh through a queueing system. Interactive
mode means typing jobscript.csh at the prompt on your screen.

. Set model resolution: number of model longitudes (LSMLON) and latitudes (LSMLAT).

Set ROOTDIR to point to the full disk pathname of the root directory containing the untarred source
code.

. Set MODEL_EXEDIR to point to the directory where the user wants the executable to be built and

run.

Set CSMDATA to point to the full disk pathname of the root directory containing the untarred input
dataset subdirectories.

Determine if MPI and/or OpenMP will be used, and if so determine the number of MPI tasks and/or
the number of OpenMP threads (note that for linux systems the number of mpi tasks is determined
from the batch directives if running in batch mode).

Set required library paths and include paths.
Modify the namelist.

Determine which model cpp tokens will be enabled.

The script can be divided into five functional sections: 1) specification of script environment variables; 2)
creation of the model input namelist; 3) creation of two header files (misc.h and preproc.h) and a directory
search path file (Filepath) needed to build the model executable; 4) creation of the model executable; and 5)
execution of the model. Jobscript.csh is set up so that the user will normally only have to modify sections
1) and 2) in order to obtain a model executable and associated namelist. Each of these functional sections
is discussed in what follows.

3.1.1

Specification of script environment variables

Table 4 lists the user modifiable script environment variables. Some of these variables are used by the
Makefile to build the model executable. Although the script provides tentative settings for all these variables,
the provided values will generally have to be modified by the user.

Table 4: User Modifiable Script Variables

Script Variable

Description

LSMLON Number of model grid longitudes.
LSMLAT Number of model grid latitudes.
ROOTDIR Full pathname for the root source code directory.

MODEL_EXEDIR

Full pathname for the directory where the model executable will reside.
Object files will be built in the directory MODEL_EXEDIR /obj.

CSMDATA

Full pathname of root input datasets directory.

SMP

Flag that turns on OpenMP (valid values are TRUE or FALSE)

If SMP is TRUE, OpenMp is enabled and NTHREADS is the number of
OpenMP threads. If SMP is FALSE, OpenMp is disabled and NTHREADS
is ignored. Currently, SMP will be set to FALSE for Linux platforms.

NTHREADS

Number of OpenMP multitasking threads.
NTHREADS should not exceed the number of physical CPUs (ie, proces-
sors) on a shared memory machine and should not exceed the number of

CPUs in a node on a distributed memory machine. This setting is ignored
if SMP is set to FALSE.

SPMD

Flag that turns on MPI (valid values are TRUE or FALSE).
If SPMD is TRUE, MPI is enabled and NTASKS is the number of MPI
tasks. If SPMD is FALSE, MPI is disabled and NTASKS is ignored.

NTASKS

Number of MPI tasks.
Setting is ignored if SPMD is set to FALSE. NTASKS should not exceed
the number of physical CPUs (ie, processors) on a machine.

LIB_NETCDF

Full pathname of directory containing the netCDF library.
The setting depends on user’s target machine.

INC_NETCDF

Full pathname of directory containing netCDF include files.
The setting depends on user’s target machine.

LIB_MPI Full pathname of directory containing the MPI library.
The setting depends on user’s target machine. Only needed if SPMD is set
to TRUE. Not needed on IBM SP, Cray X1, NEC SX6 machines, where
the MPI library and include files are obtained directly from the compiler
command.

INC_MPI Full pathname for directory containing the MPI include files.

The setting depends on user’s target machine. Only needed if SPMD is set
to TRUE. Not needed on IBM SP, Cray X1, NEC SX6 machines.

linux_fort_compiler

Determines which linux fortran compiler is used.
Valid values are pgf90 or 1f95. Only used on linux platforms.

linux_machine

Name of linux machine.
Currently NCAR-CGD linux machine ”anchorage” is supported in the
scripts. The user will need to tailor this for their own platform. Only
used on linux platforms.

linux_mpirun_cmnd

The full pathname of mpirun to use if $SPMD is set to TRUE.

Multiple fortran compilers often exist on a single linux system. Each com-
piler can have a unique path where the mpich mpirun binary is installed
for that compiler. Only used on linux platforms.

linux_batch

Determines if run will be in batch or interactive mode.
Only used on linux platforms.

DEBUG

Flag that turns on debugging in Makefile. Valid values are TRUE or

FALSE.

It is assumed that the user has set up the environment for their particular compiler choice (e.g. LD_LIBRARY _PATH
is set correctly in the user’s environment).

3.1.2 Setting the Namelist

Before building and running the model with jobscript.csh, the user must specify model namelist variables
via the CLM3 namelist, clmexp, found in jobscript.csh. Without modification, jobscript.csh generates a
default namelist file, Ind.stdin, which results in a one day model run using the provided datasets. Namelist
variables can be divided into several categories: run definitions, datasets, history and restart file settings
and land model physics settings. A full discussion of model namelist variables is given in section 4.

3.1.3 Creation of header and directory search path files

The user will generally not need to modify the section of jobscript.csh that creates the header and
directory search path files. The script creates three files in the directory SMODEL_EXEDIR /obj: the
header files misc.h and preproc.h and the directory search path file, Filepath. To modify these files, the user
should edit the file contents from within the script rather than attempt to edit the files directly, since the
script will overwrite the files upon execution. The use of these files by gnumake is discussed below. Each
of these files is summarized below.

The file, misc.h, contains resolution- and model-independent C-language pre-processor (cpp) tokens.

Table 5: misc.h CPP tokens

misc.h cpp token Description

SPMD If defined, enables distributed memory, SPMD (single program multiple
data), implementation. Automatically defined by script if environment
variable SPMD is set to TRUE. See section 3.1.1.

PERGRO If defined, enables modifications that test reasonable perturbation error
growth. Not supported at this time.

The file preproc.h contains resolution-dependent and model-dependent C-language cpp tokens.

10

Table 6: preproc.h CPP tokens

preproc.h cpp token Description

OFFLINE If defined, offline mode is invoked

COUP_CSM If defined, ccsm mode is invoked

COUP_CAM If defined, cam mode is invoked

SCAM If defined, cam single column mode is invoked
This is only applicable if COUP_CAM is ALSO defined

LSMLON Number of model longitudes

LSMLAT Number of model latitudes

RTM If defined, RTM river routing is invoked

VOC If defined, voc emission is computed

DGVM If defined, dynamic vegetation model is activated

NOCOMPETE If defined, competition for water is turned off (each pft has its own column)
This mode is no longer officially supported

C-preprocessor directives of the form #include, #if defined, etc., are used in the model source code
to enhance code portability and allow for the implementation of distinct blocks of functionality (such as
incorporation of different modes) within a single file. Header files, such as misc.h and preproc.h, are included
with #include statements within the source code. When gnumake is invoked, the C preprocessor includes
or excludes blocks of code depending on which cpp tokens have been defined. C-preprocessor directives are
also used to perform textual substitution for resolution-specific parameters in the code. The format of these
tokens follows standard cpp protocol in that they are all uppercase versions of the Fortran variables, which
they define. Thus, a code statement like

parameter(lsmlon = LSMLON); parameter(lsmlat = LSMLAT)
will result in the following processed line (for T42 model resolution):
parameter(lsmlon=128) ; parameter(lsmlat=64)

where LSMLON and LSMLAT are set in preproc.h via the jobscript.

Filepath contains a list of directories used by Makefile to resolve the location of source files and to
determine dependencies. The search begins in the current directory and proceeds to each directory appearing
in Filepath, in the order in which they are specified. All files appearing in these directories will be used
unless duplicate files are found. For the case of duplicate files, the first file found will be used by gnumake
to create the object file. If user-modified code is introduced, Filepath should contain, as the first entry, the
directory containing such modified code.

Users can add new search directories by editing jobscript.csh under “build Filepath”. The default Filepath
directory hierarchy for CLM3.0 is as follows:

Table 7: Filepath

Source Directories Functionality

$MODEL_SRCDIR/main control routines (history, restart, etc)
$MODEL_SRCDIR /biogeophys biogeophysics routines

$MODEL_SRCDIR/biogeochem ecosystem and biogeochemistry routines
$MODEL_SRCDIR/riverroute river routing routines

$MODEL_SRCDIR/csm_share/shr code shared by all CCSM geophysical model components
$MODEL_SRCDIR/utils/timing timing routines

$MODEL_SRCDIR /mksrfdata generation of surface dataset routines

11

3.1.4 Building the model

The user will generally not need to modify the section of jobscript.csh that builds the model exe-
cutable. Jobscript.csh invokes gnumake to generate the model executable. The file, Makefile, located in the
bld /offline directory, contains commands used by gnumake on each of the supported target architectures.
Successful invocation of gnumake results in an executable, ”clm”, along with a log file, ”compile_log.clm”,
documenting the build procedure. Any problems encountered during the build procedure will be documented
in this log file. A parallel gnumake is achieved in the script by invoking gnumake with the -j option, which
specifies the number of job commands to run in parallel.

3.1.5 Running the executable

The user will generally not need to modify the section of jobscript.csh that runs the model executable.
Jobscript.csh will execute the commands required to run the model under the supported target architectures.
Most MPI implementations provide a startup script which accepts the MPI executable as a command line
argument. Additional command line arguments allow the user to specify details such as the various machine
architectures or number of processes to use for the run. Once MPI has created the specified number of
processes, model execution will begin. The collection of active tasks will then compute locally and exchange
messages with each other to integrate the model.

Upon successful completion of the model run, several files will be generated in MODEL_EXEDIR.
These include history, restart, and initialization files (see section 4.3) as well as log files documenting the
model execution. These log files will have names of clm.log. YYMMDD-HHMMSS, where YY is the last two
digits of the current model year, MM is the month, DD is the day of the month, HH is the hour, MM is
the minutes, and SS is the seconds of the start of the model run. Timing files, (e.g. “timing.0”), containing
model performance statistics are also generated in the executable directory.

3.2 cam mode

When running the model as part of the CAM executable, CAM build and run scripts must be utilized.
The user should refer to User’s Guide (to the NCAR Community Atmosphere Model 3.0 (CAM 3.0) at

www.ccsm.ucar.edu/models/ccsm3.0/cam/

for specific details on building and running the CAM executable. We will only discuss some essential points
of the CAM build and run scripts here.

The header files, preproc.h and misc.h, as well as the directory search path file, Filepath, are needed
for the CAM build procedure in an analogous manner to the CLM3.0 build procedure. The user should
keep in mind that the CLM3.0 directory hierarchy MUST appear after the CAM directory hierarchy
in Filepath. CLM3.0 contains several files that have the same name as the corresponding CAM files (e.g.
time_manager.F90). When running in CAM mode, the corresponding CAM file must be used. The CAM
build and run scripts ensure this occurs.

The CLM3.0 namelist, clmexp, must also be specified. By default, RTM river routing is not enabled
in cam mode (i.e. the cpp variable, RTM, is not defined). Furthermore, CLM3.0 does not permit the user
to independently set several namelist variables (in particular, those dealing with history file logic and run
control logic) when running in cam mode. CLM3.0 will override any user input for these variables with the
corresponding values used by the CAM model. This is discussed in more detail in section 4.6.

3.3 ccsm mode

CCSM3.0 will contain CLM3.0. In ccsm mode RTM is defined by default, because this provides the fresh
water flux from the land to the ocean model. We refer the reader to the CCSM3.0 User’s Guide for further
details on running in ccsm mode.

12

http://www.ccsm.ucar.edu/models/ccsm3.0/cam/

4 Namelist Parameters

CLM3.0 namelist inputs are presented in sections 4.1 - 4.7 below. In what follows, "mode” has values of
7offline”, ”ccsm”, ”cam” or ”all”, corresponding to offline mode, ccsm mode, cam mode, or all the modes. If
a namelist variable setting is listed as required, the value must be set in the namelist in order for the model
to execute successfully. If a setting is specified as required and the mode is only given as offline, then that
variable must only be specified when running in offline mode. For namelist variable settings not listed as
required, the code will provide default settings at initialization. In the following variable descriptions, we
refer to examples presented in section 9. See Example 1 for a description of the minimum required namelist

for a successful run.

4.1 Run definitions

The following list specifies namelist variables associated with the definition of run case names, run types
(restart, initial or branch), model time step, and initial run date.

An initial run starts the model from either initial conditions that are set internally in the code (referred
to as arbitrary initial conditions) or from an initial conditions dataset (see namelist variable FINIDAT)
that enables the model to start from a spun-up state.

A restart run is an exact continuation of a previous simulation from its point of termination. Output
from a restart run should be bit-for-bit the same as if the previous simulation had not stopped. Run control
variables set in the namelist must be the same as in the run that is being restarted.

A branch run is a new case that uses a restart dataset from a previous simulation to begin the integration.
For a branch run, the length of the history interval and the output history fields do not have to be the same
as in the control simulation. For example, the branching option can be used to output selected fields more
frequently than was the case in the original run or to add new auxiliary history files to the model run.

name: CASEID

description: Case name (short identifier for run) (see ex. 1,2,3).
type: char*256

mode: offline, ccsm (obtained from atm in cam mode)
default: required (must be changed for branch run

unless BRNCH_RETAIN_CASENAME is set to .true.)

name: CTITLE

description: Case title for use within history files (long identifier).
type: char*256

mode: offline, ccsm (obtained from atm in cam mode)
default: blank

name: NSREST

description: Run type (0 for initial run, 1 for restart, 3 for branch) (see ex. 1,2,3).
type: integer

mode: offline, ccsm (obtained from atm in cam mode)
default: required

name: DTIME

description: Model time step (seconds) (see ex. 1).

13

type:
mode:

default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:

default:

name:

description:

type:
mode:

default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

integer

offline, must agree with CAM model in ccsm mode, obtained from CAM model
directly in cam mode

required (suggested range: 1200-3600 s)

STOP_YMD

Stop date (YYYYMMDD)

integer

offline (obtained from CAM in cam mode and CCSM coupler in ccsm mode)
required (if NESTEP or NELAPSE not set)

STOP_TOD

Stop time of day (seconds). Ignored if STOP_YMD not defined

integer

offline (obtained from CAM in cam mode and CCSM coupler in ccsm mode)
0

NESTEP

Ending run time in model time steps (positive) or days (negative) (see ex. 1).
Value is ignored if STOP_YMD is specified.

integer

offline (ending time obtained from CAM in cam mode and CCSM coupler in ccsm

mode)
required (if neither NELAPSE nor STOP_YMD are set)

NELAPSE

Elapsed run time in model time steps (positive) or days (negative) (see ex. 2).
Value is ignored if either STOP_YMD or NELAPSE are specified.

integer

offline (ending time is obtained from CAM in cam mode and CCSM coupler in

ccsm mode)
required (if neither NESTEP nor STOP_YMD are set)

START_YMD

Start date of run (yyyymmdd format) (see ex. 1).
integer

offline, ccsm (obtained from CAM model in cam mode)
required

START_TOD

Start time of day of run (seconds).

integer

offline, ccsm (obtained from CAM in cam mode)
0

14

name:
description:
type:

mode:
default:

name:
description:
type:

mode:
default:

name:
description:
type:

mode:
default:

name:
description:
type:

mode:
default:

name:
description:

type:
mode:
default:

REF_YMD

Reference date for time coordinate (yyyymmdd format).
integer

offline, ccsm (obtain from CAM in cam mode)

no default value but if not set, then the model reference date will automatically
be set to START_YMD

REF_TOD

Reference time of day for time coordinate (secs).
integer

offline, ccsm (obtain from CAM in cam mode)

0

CALENDAR

Calendar to use in date calculations ("no-leap” or ”gregorian”).
char*32

offline, ccsm (obtained from CAM in cam mode)

no-leap

CLUMP_PPROC

Number of “clumps” per process (see section 5).

integer

offline, ccsm (obtained from CAM in cam mode)

1 if OpenMP is disabled

number of OpenMP threads (specified in the environment) if OpenMP is enabled.

BRNCH_RETAIN_CASENAME

Flag to retain case name on a branch run. If true, then allow case name to remain
the same for branch run. In cam mode, this flag must be set for both the cam
and clm namelists.

logical

offline, cam, ccsm

false.

4.2 Specification of model input datasets

The following list specifies namelist variables associated with model input datasets.

name:
description:
type:

mode:
default:

FSURDAT

Full pathname of surface dataset (see ex. 1,5,6).
char*256

all

blank (details at the end of this section)

15

notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:
notes:

surface datasets provided with the distribution are in $CSMDATA /srfdata, raw
datasets to generate surface datasets are in SCSMDATA /rawdata

FINIDAT

Full pathname of initial conditions dataset (see ex. 1,2,3).

char*256

all

blank (details at the end of this section)

no initial datasets are provided, the user will need to generate these

FPFTCON

Full pathname of plant functional type (PFT) physiological constants dataset
(see ex. 1).

char*256

all

required

dataset provided is SCSMDATA /pftdata/pft-physiology

FRIVINP_RTM

full pathname of RTM input dataset (see ex. 4).
char*256

offline, ccsm

required if cpp token RTM is defined in preproc.h
dataset provided is $CSMDATA /rtmdata/rdirc.05

NREVSN

Full pathname of restart file name (only for branch runs) (see ex. 3).
char*256

all

required (only if branch run, NSREST=3)

MKSRF_ALL_PFTS

Flag to turn on new surface dataset format. If true, new surface dataset format
(see section 6) is used.

logical

all

false.

MKSRF_FVEGTYP

Full pathname of raw plant functional type dataset (see ex. 5).
char*256

all

required (if FSURDAT is blank)

dataset provided is $CSMDATA /rawdata/mksrf_pft.nc

16

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

type:
mode:
default:
notes:

name:

description:

MKSRF_FSOITEX

full pathname of raw soil texture dataset (see ex. 5).

char*256

all

required (if FSURDAT is blank)

dataset provided is SCSMDATA /rawdata/mksrf_soitex.10level.nc

MKSRF _FSOICOL

Full pathname of raw soil color dataset (see ex. 5).

char*256

all

required (if FSURDAT is blank)

dataset provided is $CSMDATA /rawdata/mksrf_soicol_clm2.nc

MKSRF_FLANWAT

Full pathname of raw inland water dataset (see ex. 5).
char*256

all

required (if FSURDAT is blank)

dataset provided is $CSMDATA /rawdata/mksrf lanwat.nc

MKSRF_FURBAN

full pathname of urban dataset (see ex. 5).

char*256

all

required (if FSURDAT is blank)

dataset provided is $CSMDATA /rawdata/mksrf_urban.nc

MKSRF_FGLACIER

Full pathname of glacier dataset (see ex. 5).

char*256

all

required (if FSURDAT is blank)

dataset provided is $CSMDATA /rawdata/mksrf_glacier.nc

MKSRF _FLAI

full pathname of leaf and stem area index, canopy top and bottom height dataset
(see ex. 5).

char*256

all

required (if FSURDAT is blank)

dataset provided is SCSMDATA /rawdata/mksrf lai.nc

MKSRF_OFFLINE_FNAVYORO
20 min navy orography dataset used to generate land mask (see ex. 5).

17

type: char*256

mode: offline

default: required (if MKSRF_OFFLINE_FGRID not set and FSURDAT is blank)

notes: dataset provided is $CSMDATA /rawdata/mksrf_navyoro_20min.nc

name: MKSRF_OFFLINE_FGRID

description: Dataset specifying land grid and mask at desired resolution (see ex. 6).

type: char*256

mode: offline

default: blank, required (if MKSRF_OFFLINE FNAVYORO not set and FSURDAT is
blank)

notes: datasets provided in SCSMDATA /srfdata

name: MKSRF _OFFLINE_EDGEN

description: Northern edge of land grid (degrees north) (see ex. 5).

type: real

mode: offline

default: 90.

name: MKSRF _OFFLINE_EDGEE

description: Eastern edge of land grid (degrees east) (see ex. 5).

type: real

mode: offline

default: 180.

name: MKSRF_OFFLINE_EDGES

description: Southern edge of land grid (degrees north) (see ex. 5).

type: real

mode: offline

default: -90.

name: MKSRF _OFFLINE_EDGEW

description: Western edge of grid land (degrees east) (see ex. 5).

type: real

mode: offline

default: -180.

name: OFFLINE_ATMDIR

description: Directory containing atmospheric forcing datasets (see ex. 1).

type: char*256

mode: offline

default: required

notes: datasets provided are in directory SCSMDATA /NCEPDATA

18

Additional details: FSURDAT specifies a surface dataset containing time-invariant land properties such
as plant functional types and soil textures and time-variant properties such as leaf area index. If FSURDAT
is set to the empty string, a new surface dataset is generated at run time for the specified model resolution.
The creation of a new surface dataset requires the specification of the full pathname of the following raw
datasets: MKSRF_FVEGTYP, MKSRF_FSOITEX, MKSRF_FSOICOL, MKSRF_FLANWAT,
MKSRF_FURBAN, MKSRF_FGLACIER, MKSRF _FLAI. These datasets are only used for the gen-
eration of a model surface dataset.

In addition to raw datasets, a land/ocean mask is also required for the creation of a new surface dataset. If
the model is run in ccsm or cam mode, this mask is obtained from either the ccsm flux coupler or from the cam
atmosphere model at startup. In offline mode, however, the land /ocean mask can either be calculated from a
high resolution orography dataset by setting the namelist variable MKSRF_OFFLINE_FNAVYORO or
can be read in from an input dataset already at the target resolution via the setting of the namelist variable
MKSRF_OFFLINE_FGRID.

Finally, if a surface dataset is to be created at run time, the user must specify if a new-format or old-
format dataset will be generated. By default, old-format datasets are created. By setting the namelist
variable MKSRF_ALL_PFTS to .true., a new-format surface dataset will be created (see section 6).

Subroutines involved in creating a surface dataset at run time reside in the source code directory mk-
srfdata/. In most cases the creation of a surface dataset involves a straightforward interpolation from the
raw dataset resolution to the desired model resolution. For soil texture, however, averaging would create
new soil types. Consequently, the model determines the dominant soil texture profile per gridcell from the
raw resolution to the desired resolution.

Once the surface dataset is created, the user should use FSURDAT to point to that dataset, in order
to avoid creating the same dataset multiple times.

The input file specified by the namelist variable FINIDAT contains values for the time-dependent
variables needed to initialize the model from a spun-up state. If FINIDAT is set to the empty string, the
model is internally initialized to non spun-up values. The setting of the namelist variable, HIST_CRTINIC
(described in section 4.3) can be used to generate initial CLM files during a model run. We also provide
a new tool, interpinic, which provides users with the ability to use an already existing initial dataset at
one model resolution to generate a new initial dataset at another model resolution. Section 7 provides more
details of this tool.

When the cpp token RTM is defined, the RTM river routing scheme will be invoked in running the
model. In this case, FRIVINP_RTM must be set to a river routing dataset.

In offline mode, time dependent atmospheric forcing data must be read in periodically. The directory
containing these files is given by OFFLINE_ATMDIR. This variable is ignored in cam and ccsm mode.

4.3 Specification of history and restart files

The following describes namelist variables associated with history, restart, and initialization files. In
what follows, max_tapes denotes the maximum allowable number of different types of history files (tapes)
that the model can produce (currently set to 6) and max_flds denotes the maximum number of history fields
that may appear on any given history tape (currently set to 1000).

name: HIST_CRTINIC
description: Frequency with which initial datasets will be generated.
Valid values are "YEARLY’’MONTHLY’DAILY’,’6-HOURLY’ or’NONE".
type: char*8
mode: offline, ccsm (obtained from CAM in cam mode)
default: "YEARLY’
name: HIST NHTFRQ

19

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

History tape interval(s)

(4 for model time steps, - for hours, 0 for monthly ave) (see ex. 1,3).
integer array (up to max_tapes values separated by commas)
offline, ccsm (obtained from CAM in cam mode)

0

HIST MFILT
Number of time samples per history tape(s) (see ex. 3,4).
integer array (up to max_tapes values separated by commas)

offline, ccsm (obtained from CAM in cam mode)
1 when HIST_NHTFRQ=0, else 30

HIST _NDENS

Output tape precision(s). Valid values are 1 (double precision) or 2 (single pre-
cision).

integer array (up to max_tapes values separated by commas)

all

2

HIST_ DOV2XY

Per tape spatial averaging flag. If set to true, produces grid-average history fields
on output tape. If set to false, one-dimensional fields are produced (see ex. 4).
logical array (up to max_tapes values separated by commas)

all

.true.

HIST_AVGFLAG_PERTAPE

Per tape time averaging flag. Valid values are A’ (average over history period),
T’ (instantaneous), 'X’ (maximum over history period) or M’ (minimum over
history period).

char*1 array (up to max_tapes values separated by commas)

all

blank (in this case a hardwired flag per variable is used, found in histFldsMod.F90)

HIST_TYPE1D_PERTAPE

Per tape one dimensional output type. Only used if one dimensional output is
selected for the given tape (via the setting of HIST_DOV2XY). Valid values are
"GRID’, "LAND’; "COLS’, '"PFTS’. For example, if one dimensional output is
selected for tape 3 and HIST_TYPE1D_PERTAPE is set to "COLS’, then all the
fields will have 1d column output. If the specified one dimensional output type
is not defined for a given field, output values will be set to 1.e36 for that field.
char*4 array (up to max_tapes values separated by commas)

all

blank (in this case a hardwired type per variable is used)

20

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

description:

type:
mode:
default:

name:

HIST_EMPTY_HTAPES

If set to true, all the history tapes are empty by default. Only variables explicitly
listed by the user will be output.

logical

all

false.

HIST_FINCL1, ..., HIST _FINCL6

List of fields to include on the respective history tape. See tables 9-18 for the list of
default fields on the primary history tape. Namelist specification can take one of
two forms. The user may simply specify the name of the field to be included on the
history tape (in which case the default time averaging for that field will be used).
For example, HIST_FINCL2="TV’, will add the field TV to the second history
tape with whatever default time averaging was specified for TV. Alternatively,
the user may specify the field name, followed by a ”:” followed by the time
averaging flag desired (valid flags are 'T’ for instantaneous, A’ for average, "M’
for minimum, and 'X’ for maximum). For example, HIST FINCL2="TV:I” will
add the field TV with instantaneous output to the second history tape (see ex.
3,4).

char*34 array (up to max_flds values separated by commas)

all

blank

HIST_FEXCL1, ..., HIST FEXCL6

List of fields to exclude from the respective history tape. The field name must
appear in the Master Field List of the default history tape (the primary tape).
See tables 9-18 for more details.

char*32 array (up to max_flds values separated by commas)

all

blank

MSS_IRT

Mass Store retention period (days) for output datasets (see ex. 4). User must
have Mass Store access. For example NCAR supercomputers recognize Mass
Store commands.

integer

offline, ccsm (obtained from CAM in cam mode)

0 (i.e., history files will be written to local disk, not the NCAR Mass Store)

MSS_WPASS

Mass Store write password for output datasets.
char*8

all

blank

RPNTPATH

21

description: Full unix pathname of the local restart pointer file.

type: char*256

mode: all

default: File Ind.CASEID.rpointer placed in user’s home directory
name: ARCHIVE_DIR

description: Mass Store directory to archive output files

type: char*256

mode: all

default: /USERNAME/CSM/CASEID

Additional details: The model writes its own history, restart and initial files. History files are in netCDF
file format and contain model data values written at user specified frequencies during a model run. Each field
has a default time averaging flag determining how that field will be accumulated in time over a given history
interval. The choices are to record averaged, instantaneous, maximum, or minimum values. The user may
overwrite this default setting via the namelist variable HIST_FINCLt where t can equal 1 to 6. If the user
wishes to see a field written at more than one output frequency (e.g. daily and hourly), additional history
files must be declared containing that field. By default, CLM3.0 produces a monthly averaged primary
history file and allows the user to define up to five auxiliary history files. All files contain grid averaged data
unless the namelist variable HIST _DOV2XY is set to false for a given file. Primary history files contain
the string 'h0’, whereas auxiliary history files contain the string ’h1’, ’h2’, ’h3’,’h4’ and ’h5’.

The model will also create netCDF datasets containing one dimensional instantaneous values of initial
data fields at the frequency defined by namelist variable HIST _CRTINIC. These datasets can be utilized
as “spun-up” initial conditions.

Restart files are in binary format and can be used only for restart or branch runs from previous model
simulations. Whenever a restart file is written, a corresponding local disk restart pointer file is overwritten.
The restart pointer file contains the name of the latest model restart file. By default, the restart pointer file
is placed in the user’s home directory under the name, Ind. CASEID.rpointer. The user may modify the full
pathname of the restart pointer file via the setting of the namelist variable RPNTPATH.

The following table specifies the naming convention used for output files. In this table the string yyyy
refers to the model year, mm refers to the model month, dd is the model day and sssss corresponds to
seconds into the model day. Initial and restart files always contain one time slice of instantaneous data.
However, non-monthly history files may contain multiple time slices of time-averaged data, so yyyy-mm-dd-
sssss corresponds to the first timeslice of data on the file. CASEID is the case identifier set via the namelist
input.

CASEID.clm2.r.yyyy-mm-dd-sssss restart files
CASEID.clm2.i.yyyy-mm-dd-sssss.nc initial files
CASEID.clm2.h[012345 .yyyy-mm.nc | monthly average history files
CASEID.clm2.h[012345 .yyyy-mm-dd-sssss.nc | non-monthly history files

History, restart and initialization files can be archived on the NCAR Mass Storage System (MSS) if the
namelist variable MSS_IRT is set to a value greater than zero. History, restart and initial files are archived
as follows (where USERNAME is the upper-case equivalent of the user’s login name, i.e., the user’s root
directory on the MSS):

history files /USERNAME/csm/CASEID/Ind/hist
restart files /USERNAME/csm/CASEID/Ind/rest
initial files /USERNAME/csm/CASEID/Ind/init

22

4.4 Specification of input physics variables

name:
description:
type:

mode:

default:

name:
description:
type:

mode:
default:

name:
description:

type:
mode:
default:

name:
description:
type:

mode:
default:

IRAD

Frequency of solar radiation calculations (+ for model time steps, - for hours).
integer

offline, must be consistent with CAM3.0 in ccsm mode, obtained from CAM in
cam mode

-1

CSM_DOFLXAVE

If set to true, flux averaging is performed over the duration set in IRAD.
logical

cesm (must agree with CAM3.0 setting in atm.setup.csh)

true. (.false. not supported)

WRTDIA

If true, global average 2-m temperature written to standard out (ascii log file of
the run) (see ex. 4).

logical

all

false.

PERTLIM

Perturbation limit (not supported at this time)
real

all

0

4.5 Specification of RTM River routing

name:
description:
type:

mode:
default:

RTM_NSTEPS

Frequency in number of time steps at which RTM is called.
integer

all

number of timesteps in 3 hours

4.6 Specification of cam mode namelist

When running in cam mode, certain CLM3.0 namelist variables cannot be set independently. In particu-
lar, any user specification for the namelist variables, CASEID, CTITLE, IRAD, NSREST, HIST_CRTINIC,
MSS_IRT, HIST_ NHTFRQ, and HIST_MFILT (the last two only for primary history files) will be over-
written by values obtained from CAM3.0 at startup. All other namelist settings may be set independently

by the user.

The following table specifies the namelist variables that are overwritten with values obtained from cam
and lists the associated CAM3.0 namelist variable and its default value.

23

Table 8: Namelist Variables overwritten with CAM settings

CLM Namelist CAM namelist | CAM default
CASEID CASEID required
CTITLE CTITLE blank
NSREST NSREST 0

IRAD IRADSW -1
HIST_CRTINIC INITHIST 'MONTHLY’
HIST NHTFRQ(1) | NHTFRQ(1) 0
HIST_MFILT(1) MFILT(1) 1

MSS_IRT MSS_IRT 365

4.7 Specification of ccsm mode namelist

When running in ccsm mode, the user must ensure that settings of the namelist variables, IRAD,
DTIME and CSM_DOFLXAVE, have identical values to the corresponding CAM namelist variables
IRADSW, DTIME and FLXAVE in the script cam.buildnml_prestage.csh (see CCSM3.0 User’s Guide).

In ccsm mode the RTM input dataset must be specified in the namelist using variable FRIVINP_RTM,
because RTM is defined by default.

In ccsm mode, CAM and CLM run on the same grid which depends on the specific ocean domain
utilized. Consequently, a different surface dataset is required for each atm/ocn grid combination. Currently
all supported ccsm-clm surface datasets will be released with the ccsm distribution. Not supported ones may
be generated by the user by setting FSURDAT =" ".

Additionally, a CLM3.0 spun-up initial dataset may be provided containing values for the time-dependent
variables needed to initialize the model from a spun-up state by setting the namelist variable FINIDAT.
This file MUST have the same atm/ocn resolution and landmask as the model run for which it will be
used. The variables appearing in the FINIDAT file will be internally initialized to non spun-up values at
run time if FINIDAT is not set.

Finally, the namelist variable CSM_DOFLXAVE is specific to ccsm mode only. If this variable is set
to true (the default setting), flux averaging is performed over the time interval specified by the namelist
variable, IRAD (IRAD must be greater than 1). The false setting is not supported.

5 CLM3.0 Data Structures

In what follows, we provide a brief summary of the CLM3.0 data structures. Understanding of these
data structures is essential before the user attempts to modify code and/or add new history output fields to
the model.

The subgrid hierarchy in CLM3.0 is composed of gridcells, landunits, columns and plant functional types
(pfts). Each gridcell can have a different number of landunits, each landunit can have a different number of
columns and each column can have multiple pfts. This results in efficient memory allocation, and allows for
the implementation of many different types of subgrid representations.

The first subgrid level, the landunit, is intended to capture the broadest spatial patterns of subgrid
heterogeneity. These broad patterns include physically distinct surface types (glaciers, lakes, wetlands, and
vegetated areas). In terms of CLM3.0 variables, the central distinguishing characteristic of the landunit is
that this is where physical soil properties are defined: texture, color, depth, pressure-volume relationships,
and thermal conductivity.

The second subgrid level, the column, is intended to capture potential variability in the soil and snow
state variables within a single landunit. The central characteristic of the column is that this is where the
state and flux variables for water and energy in the soil and snow are defined. Regardless of the number and
type of pfts occupying space on the column, the column physics operates with a single set of upper boundary

24

fluxes, as well as a single set of transpiration fluxes from multiple soil levels. These boundary fluxes are
weighted averages over all pfts.

The third and final subgrid level is referred to as the plant functional type (pft), but it also includes the
treatment for bare ground. It is intended to capture the biophysical and biogeochemical differences between
broad categories of plants, in terms of their functional characteristics. All fluxes to and from the surface
are defined at the pft level, as are the vegetation state variables (e.g. vegetation temperature, canopy water
storage, and carbon for the leaf, stem, and roots).

In addition to state and flux variable data structures for conserved quantities (energy, water, carbon,
etc.), each subgrid level also has a physical state data structure for handling quantities that are not involved
in conservation checks (diagnostic variables). For example, soil texture is defined through physical state
variables at the landunit level, the number of snow layers and the roughness lengths are defined as physical
state variables at the column level, and the leaf area index and the fraction of canopy that is wet are defined
as physical state variables at the pft level.

The hierarchical subgrid data structures are implemented in the code through the modules clmtype.F90,
clmtypelnitMod.F90, decompMod.F90 and initGridCellsMod.F90. These routines are all in the
/src/main/ subdirectory. The new code makes extensive use of the Fortran 90 implementation of the
derived data type. This permits the user to define new data types that can consist of multiple standard data
types (integers, doubles, strings) as well as other derived data types.

This subgrid hierarchy is implemented in CLM3.0 as a set of nested derived types. The entire definition is
contained in module clmtype.F90. Extensive use is made of pointers, both for dynamic memory allocation
and for simplification of the derived type referencing within subroutines. The use of pointers for dynamic
memory allocation ensures that the number of subgrid elements at each level in the hierarchy is flexible and
resolved at run time, thereby eliminating the need to statically declare arrays of fixed dimensions that might
end up being sparsely populated. The use of pointers for referencing members of the derived data type
within the subroutines provides a coherent treatment of the logical relationships between variables (e.g., the
user cannot inadvertently change a pft-level variable within a subroutine that is supposed to operate on the
column states and fluxes), and a more transparent representation of the core algorithms (it is easy to tell
when the code is in a column or pft loop).

The module, clmtype.F90, is organized such that derived types which are members of other derived
types are defined first (a Fortran 90 compiler requirement). In particular, the energy and mass conservation
data types are defined first, followed by data types constituting the pft level, column level, landunit level,
gridcell level and the model domain level. Finally, the hierarchical organization of these types is defined,
starting with the model domain level, which consists in part of a pointer to an array of gridcells, each of
which consists in part of a pointer to an array of landunits, each of which has a pointer to an array of
columns, which each have a pointer to an array of pfts.

Model initialization occurs in module initializeMod.F90. A brief summary of the CLLM3.0 initialization
is provided. For a more detailed discussion, the user is referred to the CLM3.0 Developer’s Guide. The
first step in CLM3.0 initialization is to determine processor and thread decomposition (i.e. “clump” layout).
This is done via a call to subroutine initDecomp in module decompMod.F90. Subsequently, memory is
allocated for the clm data structures in subroutine initClmtype in module clmtypelnitMod.F90. Once
memory allocation has occurred, the hierarchy of the data structures (e.g. assignment of pfts to columns,
etc.) is determined in subroutine initGridCells in module initGridCellsMod.F90. Use is made of input
gridded datasets defining the spatial distribution of pfts and other surface types (glacier, lake, etc.). Finally,
the necessary model filters (e.g. isolating soil points, lake points, etc) are determined in routine initFilters
in module filterMod.F90.

6 CLM3.0 Surface Dataset Formats

As mentioned in section 4.2, CLM3.0 now supports two surface-data formats. The new format differs
from the old format in only two variables:

25

e PFT - removed from the new format surface-data file.
e PCT_PFT - percent of the land gridcell covered by each pft, including pfts with zero percent cover
(not percent of the vegetated portion covered by the four dominant pfts).

The new format surface dataset will be created if the following namelist variable is set:
mksrf_all_pfts = .true.

The original format surface dataset will be created by default, or if
mksrf_all_pfts = .false.

The surface data in its new format provides more flexibility than in the original format by allowing the
user to decide the number of dominant pfts per gridcell for their simulation without creating a new surface-
data file each time this number changes. This is possible because all pfts found in the raw data are included
in the new format surface dataset in the order that they are listed in the pft-physiology file FPFTCON.
Using the new format surface-data file as input, the model selects at run-time the 4 dominant natural pfts
and places them on a natural vegetation landunit, while it places crops separately on a crop landunit.

The user may change at compile time the model parameter that specifies the number of dominant pfts
used in the model. The parameter, maxpatch_pft in module clm_varpar.F90 in the src/main directory
determines the maximum number of vegetated pfts in the naturally vegetated landunit. Currently this is
set to 4. If the user were to increase this value to 6 and recompile the code, then the model would select
the 6 dominant natural pfts and place them on the natural vegetation landunit. In the original format, after
recompiling the code, a new surface dataset would need to be created, which would contain the 6 dominant
pfts (both natural and crop).

Similar to maxpatch_pft, the parameter maxpatch_cft specifies the maximum number of crop pfts in
the crop landunit in the new format. Currently this number is set to 2 and corresponds to corn and wheat
vegetation types. In CLM3.0, these vegetation types for corn and wheat are currently hard-wired to values
of 15 and 16, respectively, which are identical in terms of their physiological properties. This hard-wiring of
values will be removed in future releases.

The new format surface-data file will facilitate changing the land cover in the middle of a simulation.
It is important to note, however, that such a capability will require additional code development which is
not currently in the CLM3.0 release. The presence of distinct natural and crop landunits will also allow the
separate treatment of these landunits using different modules. For example, the dynamic vegetation model
(DGVM) in CLM3.0 may be used for the natural landunit, while a crop model could be used for the crop
landunit. Although no crop model is included yet and only natural vegetation is permitted when DGVM is
active in the CLM3.0 release, the new surface dataset form will facilitate the introduction of these changes
in the code.

The new surface-data format and the separate vegetation landunits lead to small changes in CLM’s
simulated fluxes to the atmosphere. As a result, one will see small changes in the simulated climate in CAM
or CCSM mode. Users should decide to work with one of the surface-data formats and not switch between
such formats in the middle of a study. However, if a user desires to do surface dataset development, they
are strongly encouraged to use the new surface dataset format.

7 Creating a Spun-up Initial Dataset

Often it may take several simulated years to “spin up” the model. For example, in CCSM mode it may
take numerous decades to spin up the deep soil liquid water. As a result, it has become necessary to provide
users with the tool to create a new initial dataset using a spun up initial dataset at another resolution or
landmask. In CLM3.0 we are providing such a tool, interpinic, in the directory tools/interpinic. The
only constraint is that the user must have already created a “template” initial dataset at the new resolution
before this tool is used. This can be done by running the model for one day as in Example 1 but with an
additional namelist setting:

26

hist_crtinic = ’DAILY’

A new initial dataset will be created as a result of this run. The tool interpinic will then overwrite the
non spun-up values of CLM3.0 variables in this initial dataset with spun-up values from the spun-up initial
dataset.

8 History File Fields

The following sections discuss both the fields that may currently be output to CLM3.0 history tapes as
well as code modifications that the user must make to add new fields to the history tapes.

Tables 9-18 list the fields that currently may be output to a CLM3.0 history tape. By default, these
fields appear on the primary history tape. The dimensions of each field may include ’time’ (days since the
beginning of the simulation), levsoi’ (number of soil layers, levsoi = 10), ’levlak’ (number of lake layers,
levlak=10), and ’lat’ and ’lon’ (number of latitude and longitude points, e.g., lat=64, lon=128 for a T42
simulation) for grid averaged two dimensional output, and ’gridcell’, 'landunit’, ’column’ or ’pft’ for one
dimensional output. The dimensions of the RTM fields, QCHOCNR and QCHANR, include ’lonrof’ and
latrof’, the number of latitude and longitude points on the RTM grid. The two RTM fields are always output
on the 0.5 degree RTM grid regardless of the resolution of the model run. Note that the 1d dimension type
appearing in the dimensions entry specifies only the default 1d output type. For example, '"TSA’ will be
output by default in pft 1d output. However, that default type may be changed for a given history tape via
the setting of the namelist variable HIST_TYPE1D_PERTAPE. A history field may appear as single-level
(SL) or multi-level (ML). Finally, unless explicitly specified in the description, all fields are time averaged
over the requested history interval.

Table 9: Master Field List - Temperature and Humidity

Name Description Units | 1d Output | Level | Spatial Valid-
ity
TSA 2-m air temperature K pft SL global
TV vegetation temperature K pft SL global
TG ground temperature K column SL global
TSOI soil temperature K column ML lakes excluded
TLAKE lake temperature K column ML only lakes in-
cluded
TSNOW snow temperature K column SL lakes excluded
TREFMNAYV | daily minimum of hourly-averaged 2-m | K pft SL global
temperature
TREFMXAV | daily maximum of hourly-averaged 2- | K pft SL global
m temperature
Q2M 2-m specific humidity kg/kg | pft SL global

Table 10: Master Field List - Surface Radiation

Name Description Units | 1d Output | Level | Spatial Valid-
ity

FSA absorbed solar radiation W/m2 | pft SL global

SABG solar radiation absorbed by ground W/m2 | pft SL global

SABV solar radiation absorbed by vegetation | W/m2 | pft SL global

FSR reflected solar radiation W/m2 | pft SL global

FSRVD direct visible reflected solar radiation | W/m2 | pft SL global

27

Table 10: Master Field List - Surface Radiation

FSRND direct near-infrared reflected solar ra- | W/m2 | pft SL global
diation

FSRVDLN | direct visible reflected solar radiation | W/m2 | pft SL global
at local noon

FSRNDLN | direct near-infrared reflected solar ra- | W/m2 | pft SL global
diation at local noon

FSRVI diffuse visible reflected solar radiation | W/m2 | pft SL global

FSRNI diffuse near-infrared reflected solar ra- | W/m2 | pft SL global
diation

FIRA net infrared (longwave) radiation W/m2 | pft SL global

FIRE emitted infrared (longwave) radiation | W/m2 | pft SL global

28

Table 11: Master Field List - Surface Energy Fluxes

Name Description Units 1d Output | Level | Spatial Valid-
ity
FCTR | canopy transpiration W/m2 pft SL global
FCEV | evaporation of canopy-intercepted wa- | W/m2 pft SL global
ter
FGEV | ground evaporation W/m2 pft SL global
FSH sensible heat flux W/m2 pft SL global
FSH_G | sensible heat from ground W/m2 pft SL global
FSH_V | sensible heat from vegetation W/m2 pft SL global
FGR heat flux into snow/soil (includes snow | W/m2 pft SL global
melt)
FSM snow melt heat flux W/m2 column SL global
TAUX | zonal surface stress kg/m/s2 | pft SL global
TAUY | meridional surface stress keg/m/s2 | pft SL global
Table 12: Master Field List - Vegetation Phenology
Name | Description Units | 1d Output | Level | Spatial Valid-
ity
ELAT | exposed one-sided leaf area index m2/m2 | pft SL global
ESAT | exposed one-sided stem area index m2/m2 | pft SL global
Table 13: Master Field List - Canopy Physiology
Name Description Units 1d Output | Level | Spatial Valid-
ity
RSSUN | sunlit leaf stomatal resistance (mini- | s/m ptt SL lakes excluded
mum over time interval)
RSSHA | shaded leaf stomatal resistance (mini- | s/m pft SL lakes excluded
mum over time interval)
BTRAN | transpiration beta factor (soil mois- | unitless | pft SL lakes excluded
ture limitation)
FPSN photosynthesis unitless | pft SL global

29

Table 14: Master Field List - Hydrology

Name Description Units 1d Output | Level | Spatial Valid-
ity

H20S01I volumetric soil water (ratio of water to | mm3/mm3 | column ML lakes excluded

total soil volume)
H20SNO snow depth (liquid water equivalent) mm column SL global
FSNO fraction of soil covered by snow unitless column SL global
H20CAN water on the canopy mm pft SL global
SOILLIQ soil liquid water kg/m2 column ML lakes excluded
SOILICE soil ice kg/m?2 column ML lakes excluded
SNOWLIQ snow liquid water kg/m2 column SL lakes excluded
SNOWICE | snow ice kg/m?2 column SL lakes excluded
SNOWDP snow height m column SL global
SNOWAGE | snow age unitless column SL global
QINFL water infiltration in soil mm/s column SL global
QOVER surface runoff mm/s column SL global
QRGWL surface runoff at glaciers, wetlands, | mm/s column SL global

and lakes
QDRAI sub-surface drainage mm/s column SL global
QINTR canopy interception of precipitation mm/s pft SL global
QDRIP throughfall mm/s pft SL global
QMELT snow melt mm/s column SL global
QSOIL ground evaporation mm/s pft SL global
QVEGE evaporation of canopy-intercepted wa- | mm/s pft SL global

ter
QVEGT canopy transpiration mm/s pft SL global
QCHOCNR. | RTM river discharge into ocean (in- | m3/s 2-D only SL global

cluded if RTM defined)
QCHANR RTM river flow (included if RTM de- | m3/s 2-D only SL global

fined)

Table 15: Master Field List - Water and Energy Balance Checks
Name Description Units | 1d Output | Level | Spatial Valid-
ity

ERRSOI | soil/lake energy conservation error W/m2 | column SL global
ERRSEB | surface energy conservation error W/m2 | pft SL global
ERRSOL | solar radiation conservation error W/m2 | pft SL global
ERRH20 | total water conservation error mm column SL global

30

Table 16: Master Field List - Atmospheric Forcing

Name Description Units | 1d Output | Level | Spatial Valid-
ity
RAIN rain mm/s | gridcell SL global
SNOW Snow mm/s | gridcell SL global
TBOT atmospheric air temperature K gridcell SL global
WIND atmospheric wind velocity magnitude | m/s gridcell SL global
THBOT atmospheric air potential temperature | K gridcell SL global
QBOT atmospheric specific humidity kg/kg | gridcell SL global
ZBOT atmospheric reference height m gridcell SL global
FLDS incident longwave radiation W/m2 | gridcell SL global
FSDS incident solar radiation W/m2 | gridcell SL global
FSDSVD direct visible incident solar radiation | W/m2 | pft SL global
FSDSND direct near-infrared incident solar ra- | W/m2 | pft SL global
diation
FSDSVDLN | direct visible incident solar radiation | W/m2 | pft SL global
at local noon
FSDSNDLN | direct near-infrared incident solar ra- | W/m2 | pft SL global
diation at local noon
FSDSVI diffuse visible incident solar radiation | W/m2 | pft SL global
FSDSNI diffuse near-infrared incident solar ra- | W/m2 | pft SL global
diation
Table 17: Master Field List - Soil
Name Description Units 1d Output | Level | Spatial Valid-
ity
ZS01 soil layer node depth m column ML lakes excluded
DZSOI soil layer thickness m column ML lakes excluded
WATSAT | volumetric soil water at saturation | mm3/mm3 | column ML glaciers, wet-
(equal to the porosity) lands, lakes
excluded
SUCSAT | saturated soil matric potential mm column ML glaciers, wet-
lands, lakes
excluded
BSW slope of soil water retention curve unitless column ML glaciers, wet-
lands, lakes
excluded

31

Table 18: Master Field List - Volatile Organic Compounds (only

included if VOC defined)

Name Description Units 1d Output | Level | Spatial Valid-
ity
BIOGENCO | biogenic CO flux pg/m2/h | pft SL global
ISOPRENE isoprene flux pug/m2/h | pft SL global
MONOTERP | monterpene flux pg/m2/h | pft SL global
ORVOC other reactive VOC flux pg/m2/h | ptt SL global
ovocC other VOC flux pg/m2/h | pft SL global
VOCFLXT total VOC flux into atmosphere ug/m2/h | pft SL global
Table 19: Master Field List - Dynamic Vegetation (only included
it DGVM defined)
Name Description Units 1d Output | Level | Spatial Valid-
ity
FMICR | microbial respiration pmol/m2/s | pft SL global
FRMS stem maintenance respiration pmol/m2/s | pft SL global
FRMR | root maintenance respiration pmol/m2/s | pft SL global
FRMF foliage maintenance respiration pmol/m2/s | pft SL global
FRG growth respiration pmol/m2/s | pft SL global
FCO2 net CO2 flux pmol/m2/s | pft SL global
DMI net primary production pmol/m2/s | pft SL global
HTOP height of top of canopy m pft SL global
HBOT height of bottom of canopy m pft SL global
TLAI total one-sided leaf area index m2/m2 pft SL global
TSAI total one-sided stem area index m2/m2 pft SL global
TDA daily average 2-m temperature K pft SL global
T10 10-day running mean of 2-m tempera- | K pft SL global
ture
AGDDO | growing degree-days base 0 degrees C | degree-days | pft SL global
AGDD5 | growing degree-days base 5 degrees C | degree-days | pft SL global

Note that for snow related fields (e.g. SNOWLIQ), horizontal averaging is done only using columns that
have snow. In this horizontal averaging, lake subgrid points are excluded. Furthermore, for snow related
fields, vertical averaging is done by summing (e.g., SNOWLIQ) or averaging (e.g., TSNOW) only over valid

snow layers.

Also note that additional history fields appear in the primary history file when DGVM is defined. In
addition, a separate history file is produced once per year when DGVM is defined. This file is described in
the CLM-DGVM user’s guide.

9 Offline Mode Namelist Examples

The following examples illustrate different namelist options that can be used to run CLM3.0 in offline

mode.

32

9.1 Example 1: Offline initial run, one day, global

When the model is run in offline mode using a pre-existing surface dataset, the minimum namelist parame-
ters are: CASEID, NSREST, NESTEP or NELAPSE, FSURDAT, FPFTCON, OFFLINE_ATMDIR,
START _YMD, and DTIME. If FSURDAT is blank, a surface dataset will be generated at run time and
additional variables need to be specified (see section 4.2 and Examples 5 and 6). Namelist parameters not
specified will be set to default values. The following gives an example of a simple namelist.

&clmexp

CASEID = ’test01’

NSREST = 0

NESTEP = -1

FSURDAT = $CSMDATA/srfdata/clms_64x128_USGS_c030605.nc’
FINIDAT = 77

FPFTCON = ’$CSMDATA/pftdata/pft-physiology’
FRIVINP_RTM = $CSMDATA/rtmdata/rdirc.05’
OFFLINE_ATMDIR = °’$CSMDATA/NCEPDATA’

START_YMD = 19971231

DTIME = 1800

HIST_NHTFRQ = =24

/

CASEID = ’test01’

Case identifier which distinguishes this particular simulation from another. The string in CASEID shows
up in the names of history, restart, and initial files, in the restart pointer file name (see Example 2) and in
the Mass Store pathname where history, restart, and initial files are placed if the Mass Store is used.

NSREST =0

Requests an initial run, as opposed to a restart or a branch run. An initial run does not require the use of an
initial input datafile (FINIDAT). If none is provided, the model uses non spun-up initialization provided
in the code (see src/main/iniTimeVar.F90).

NESTEP = -1
Specifies the run’s ending time to be at the end of day 1.

FSURDAT = '$CSMDATA /srfdata/clms_64x128_USGS_c030605.nc’

Specifies the name of the surface data input file. This particular T42 surface dataset can be used both in cam
and offline mode. The model resolution (i.e. parameters LSMLON and LSMLAT) must be compatible with
the resolution of FSURDAT. If the filename appeared without a path specifying its exact location, the file
would be expected in the executable directory, defined by the environment variable $MODEL_EXEDIR.

FINIDAT ="~
Specifies the initial file to be used to prescribe initial values for time-dependent variables. Since no file is
specified in this case, the model will be internally initialized to non spun-up values (arbitrary initialization).

FPFTCON = "$CSMDATA /pftdata/pft-physiology’
Specifies a file with PFT (Plant Functional Type) parameters.

FRIVINP _RTM = "$CSMDATA /rtmdata/rdirc.05’

Specifies the input file required for the operation of RTM (River Transport Model). By default, RTM will
operate at half degree horizontal resolution and will be invoked every 3 hours, where the fluxes input to RTM
(i.e., runoff) are averaged over the 3 hour period. If the user wants the RTM scheme to operate at a different
frequency than once every 3 hours, RTM_NSTEPS should be set to the desired value of timesteps. Use of
RTM is activated in the jobscript.csh with the C pre-processor (cpp) directive #define RTM in the header
file preproc.h (see section 3.1.3).

33

OFFLINE_ATMDIR = "$CSMDATA /NCEPDATA’
Specifies the location of the atmospheric driver data set. Such a data set is required for the model to run in
offline mode.

START_YMD = 19971231

Specifies the base date of the simulation and must be compatible with the atmospheric input data. For
example, START_YMD = 19971231 will use the atmospheric input file 1997-12.nc. In a restart or branch
run, START_YMD need not be changed, as long as it refers to a date earlier than the date of restart or
branch.

DTIME = 1800
Specifies the simulation’s timestep in seconds. In offline mode, the model can handle a timestep of up to
3600 seconds.

HIST NHTFRQ = -24
Primary history files and restart files will be produced in the executable directory and will be written every
24 hours.

9.2 Example 2: Restart run

The following namelist generates a restart run which continues the run in Example 1.

&clmexp

CASEID = ’testO1’

NSREST = 1

NELAPSE = -1

FSURDAT = ’$CSMDATA/srfdata/clms_64x128_USGS_c030605.nc’
FINIDAT =27

FPFTCON = ’$CSMDATA/pftdata/pft-physiology’
FRIVINP_RTM = ’$CSMDATA/rtmdata/rdirc.05’
OFFLINE_ATMDIR = ’$CSMDATA/NCEPDATA’

START_YMD = 19971231

DTIME = 1800

HIST_NHTFRQ = -24

/

NSREST =1

Requests a restart run. A restart run finds the name of the appropriate restart file automatically by reading
the file, Ind. CASEID.rpointer found by default in the user’s home directory. In this example, the pointer
file will be Ind.testOl.rpointer. Restart runs are meant to be ’seamless’, producing the same output as runs
which continued without a restart.

NELAPSE = -1

Specifies the run’s ending time to be one day after the point of restart. This is equivalent to entering
NESTEP = -2, since the previous run stopped at the end of day 1. If NESTEP were used in this namelist,
it would override the value given to NELAPSE.

All other namelist variables remain the same to ensure a ’seamless’ restart (for information, see example 1).
Also, for a seamless restart, the user should generally execute the code with the same executable used in the
initial run (ie, without compiling the code again). The jobscript will not recompile the code unless the user
has made changes to the code or files have been removed from the bld directory.

34

9.3 Example 3: Branch run

The following namelist generates a branch run starting from restart files generated by Example 1. The user
may branch a run with the same executable used in the initial run (i.e., without recompiling the code) unless
branching is used to test changes in the code (for debugging or sensitivity purposes).

&clmexp

CASEID = ’branch_run’

NSREST = 3

NREVSN = ’test01.clm2.r.1998-01-01-00000"
NELAPSE = -1

FSURDAT = ’$CSMDATA/srfdata/clms_64x128_USGS_c030605.nc’
FINIDAT =22

FPFTCON = ’$CSMDATA/pftdata/pft-physiology’
FRIVINP_RTM = ’$CSMDATA/rtmdata/rdirc.05’
OFFLINE_ATMDIR = ’>$CSMDATA/NCEPDATA’

START_YMD = 19971231

DTIME = 1800

HIST_FINCL2 = TV:I?

HIST_NHTFRQ = -3,5

HIST_MFILT = 2,3

/

See Example 1 for explanations of namelist variables which remain unchanged.

NSREST =3
Requests a branch run.

NREVSN = "test01.clm2.r.1998-01-01-00000’
Supplies the name of the restart file which will initialize this run. (This file can be produced by running
Example 1 above).

NELAPSE = -1
Specifies the run’s ending time to be one day after the point of branching.

HIST_FINCL2 = "TV:I’
Add an auxiliary history file with the field “TV” that is output instantaneously.

HIST_NHTFRQ =-35
Changes the frequency of primary history writes to every 3 hours. The write frequency of the auxiliary file
is every 5 time steps. This is an example of a change which a user may wish to test in a branch run.

HIST MFILT = 2,3
The primary history file will have 2 time samples on every tape. The auxiliary history file will have 3 time
samples on every tape.

9.4 Example 4: Auxiliary history files

This example covers the addition of an auxiliary history file, the removal of a field from the primary history
file and the change of field type in a history file. A variety of other namelist options are also illustrated.

&CLMEXP

CASEID = ’rtm_run’
NSREST = 0
NESTEP = =31

35

FSURDAT = ?$CSMDATA/srfdata/clms_64x128_USGS_c030605.nc’

FINIDAT = 72

FPFTCON = ’$CSMDATA/pftdata/pft-physiology’
FRIVINP_RTM = ’$CSMDATA/rtmdata/rdirc.05’
OFFLINE_ATMDIR = ’$CSMDATA/NCEPDATA’
START_YMD = 19980101

DTIME = 1800

HIST_FEXCL1 = ’TSNOW’

HIST_FINCL2 = TV’,’TG:I’

HIST_DOV2XY = .true.,.false.

HIST_NHTFRQ = -24,-12

HIST_MFILT = 4,2

MSS_IRT = 365

WRTDIA = .true.

/

For namelist variables which are repeated, refer to Examples 1, 2, and 3.

HIST _FEXCL1 = "TSNOW’
The field "TSNOW?’ will be excluded from the primary tape.

HIST_FINCL2 = '"TV’)TG:I’
Specifies the two fields to be added to the auxiliary history output. The first field, "TV’, will have the default
time averaging done, whereas the second field, "TG’, will have instantaneous output.

HIST_DOV2XY = .true.,.false.
History output will appear in gridded two-dimensional format for the primary file and in one-dimensional
subgrid format for the auxiliary file.

HIST NHTFRQ = -24-12
History output will be directed to the primary history file every 24 model hours and to the auxiliary history
file every 12 hours.

HIST MFILT = 4,2
Each primary history file will contain 4 time slices of output, while each auxiliary history file will contain 2
time slices of output.

MSS_IRT = 365
Output files will be archived on the NCAR Mass Storage System with a retention time of 365 days.

WRTDIA = .true.
A global average of land surface air temperature as diagnostic will appear in the standard output file of the
simulation.

9.5 Example 5. Generation of regional grid surface dataset

A regular grid surface dataset can be generated at run time for a single gridcell or for gridcells comprising a re-
gional or global domain. In all cases, the cpp tokens LSMLON and LSMLAT must be set to the desired res-
olution (e.g., LSMLON=1, LSMLAT=1 for a single gridcell simulation or LSMLON=120, LSMLAT=60
for a 3 degree by 3 degree global simulation). To generate a surface dataset for a regional run, the vari-
ables MKSRF_OFFLINE_EDGES, MKSRF_OFFLINE_EDGEN, MKSRF_OFFLINE_EDGEE,
and MKSRF_OFFLINE_EDGEW and their values need to be added to the namelist. A surface dataset
will be created with the name surface-data. LSMLONxLSMLAT.nc (e.g., for a single point simulation the

36

file name will be surface-data.001x001.nc). The model can then be run by following Example 1 where
FSURDAT points to the new surface dataset.

In the following example, a regional grid is created over the Amazon basin. LSMLON and LSMLAT
should be set to 15 and 11, respectively, for 3 degree by 3 degree horizontal resolution.

&clmexp

CASEID = ’create_regional_surfdat’

NSREST =0

NESTEP =2

START_YMD = 19971231

DTIME = 1800

FSURDAT =

FRIVINP_RTM = "$CSMDATA/rtmdata/rdirc.05’

FPFTCON = ’$CSMDATA/pftdata/pft—-physiology’
OFFLINE_ATMDIR = ’$CSMDATA/NCEPDATA’
MKSRF_OFFLINE_FNAVYORO = ’$CSMDATA/rawdata/mksrf_navyoro_20min.nc’
MKSRF_FVEGTYP = ’$CSMDATA/rawdata/mksrf_pft.nc’
MKSRF_FSOITEX = "$CSMDATA/rawdata/mksrf_soitex.10level.nc’
MKSRF_FSOICOL = $CSMDATA/rawdata/mksrf_soicol_clm2.nc’
MKSRF_FLANWAT = ’$CSMDATA/rawdata/mksrf_lanwat.nc’
MKSRF_FGLACIER = ’$CSMDATA/rawdata/mksrf_glacier.nc’
MKSRF_FURBAN = $CSMDATA/rawdata/mksrf_urban.nc’
MKSRF_FLAI = "$CSMDATA/rawdata/mksrf_lai.nc’
MKSRF_OFFLINE_EDGEN = 12

MKSRF_OFFLINE_EDGES = =21

MKSRF_OFFLINE_EDGEE = -36

MKSRF_OFFLINE_EDGEW = -81

/

FSURDAT ="~

A surface dataset named surface-data. LSMLONxLSMLAT .nc will be created in the model executable direc-
tory. LSMLON and LSMLAT are defined in jobscript.csh (see section 3.1.3).

MKSRF_OFFLINE_FNAVYORO = "$CSMDATA /rawdata/mksrf_navyoro_20min.nc’
Points to the orography dataset used to derive the model’s land mask in offline mode. The environment
variable $CSMDATA is explained in 3.1.1.

MKSRF _FVEGTYP, MKSRF _FSOITEX, MKSRF _FSOICOL, MKSRF FLANWAT, MKSRF_FGLACIER,
MKSRF_FURBAN, and MKSRF_FLAI
Specify the raw (usually high resolution) input datasets used to create the model surface dataset.

MKSRF_OFFLINE_EDGES, MKSRF_OFFLINE_ EDGEN, MKSRF_OFFLINE_EDGEE, and MK-
SRF_OFFLINE EDGEW

Must be defined for the desired model regional domain because the default values assume a global domain.
The units are degrees north for EDGES and EDGEN and degrees east for EDGEE and EDGEW.

9.6 Example 6. Generation of global gaussian surface dataset

Only global surface datasets can be created on a non-regular grid, such as a gaussian grid. To generate a
surface dataset on a gaussian grid, the cpp tokens LSMLON and LSMLAT must be set to the desired
resolution (e.g., LSMLON=128, LSMLAT=64 for a T42 grid), and MKSRF_OFFLINE_FGRID must
be set to the appropriate dataset in SCSMDATA /srfdata specifying the model grid, land mask and

37

land fraction for the model grid. At T42 resolution, a surface dataset, “surface-data.128x064.nc”, will
be created in the model executable directory. This dataset may be renamed by the user to be more self-
explanatory. For example, the surface dataset created using this example was clms_64x128 USGS_c030605.nc
in $CSMDATA /srfdata. And with the addition of MKSRF_ALL PFTS=.true. to this namelist, we
created clms_64x128_allpfts_c040426.nc.

The following namelist will result in the generation of a surface dataset on a global gaussian grid.

&clmexp

CASEID = ’create_global_surfdat’
NSREST = 0
NESTEP = 2
START_YMD = 19971231
DTIME = 1800
FSURDAT =27
FRIVINP_RTM = $CSMDATA/rtmdata/rdirc.05’
FPFTCON = ’$CSMDATA/pftdata/pft-physiology’
OFFLINE_ATMDIR = ?$CSMDATA/NCEPDATA’
MKSRF_QFFLINE_FGRID = ’$CSMDATA/srfdata/fgrid.clms_64x128_USGS_c030605.nc’
MKSRF_FVEGTYP = ’$CSMDATA/rawdata/mksrf_pft.nc’
MKSRF_FSOITEX = $CSMDATA/rawdata/mksrf_soitex.10level.nc’
MKSRF_FS0ICOL = $CSMDATA/rawdata/mksrf_soicol_clm2.nc’
MKSRF_FLANWAT = ’$CSMDATA/rawdata/mksrf_lanwat.nc’
MKSRF_FGLACIER = ’$CSMDATA/rawdata/mksrf_glacier.nc’
MKSRF_FURBAN = $CSMDATA/rawdata/mksrf_urban.nc’
MKSRF_FLAI = $CSMDATA/rawdata/mksrf_lai.nc’
/

FSURDAT ="~

A surface dataset named surface-data.128x064.nc will be created at run time in the model executable direc-
tory.

MKSRF _OFFLINE_FGRID = '§CSMDATA /srfdata/fgrid.clms_64x128_USGS_c030605.nc’
Points to the dataset containing the model grid, land mask and fractional land for the surface dataset.

MKSRF _FVEGTYP, MKSRF _FSOITEX, MKSRF_FSOICOL, MKSRF_FLANWAT, MKSRF_FGLACIER,
MKSRF_FURBAN, and MKSRF_FLAI
Same as Example 5.

38

	Introduction
	Obtaining the Source Code and Datasets
	Creating and Running the Executable
	offline mode: using jobscript.csh
	Specification of script environment variables
	Setting the Namelist
	Creation of header and directory search path files
	Building the model
	Running the executable

	cam mode
	ccsm mode

	Namelist Parameters
	Run definitions
	Specification of model input datasets
	Specification of history and restart files
	Specification of input physics variables
	Specification of RTM River routing
	Specification of cam mode namelist
	Specification of ccsm mode namelist

	CLM3.0 Data Structures
	CLM3.0 Surface Dataset Formats
	Creating a Spun-up Initial Dataset
	History File Fields
	Offline Mode Namelist Examples
	Example 1: Offline initial run, one day, global
	Example 2: Restart run
	Example 3: Branch run
	Example 4: Auxiliary history files
	Example 5. Generation of regional grid surface dataset
	Example 6. Generation of global gaussian surface dataset

